- 16-1 PLC Summary
- 16-2 Notes Before Using a PLC
- 16-3 Turn on
- 16-4 Basic Principles of PLC Ladder Diagrams
- 16-5 Various PLC Device Functions
- 16-6 Introduction to the Command Window
- 16-7 Error Display and Handling
- 16-8 Explanation of PLC Speed Mode Control
- 16-9 Count Function Using Pulse Input

16-1 PLC Summary

16-1-1 Introduction

The commands provided by the MS3's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the use of basic commands and application commands, follow the operating methods of Delta's PLC DVP series.

16-1-2 WPLSoft ladder diagram editing tool

WPLSoft is Delta's software program for the DVP and MS3 programmable controllers in Windows operating system environment. In addition to general PLC program design and general Windows editing functions (such as cut, paste, copy, and multiple windows), WPLSoft also provides many features such as Chinese/English annotation editing, registry editing, settings, file reading, saving, and contact graphic monitoring and settings.

The following table lists the basic requirements for installing the WPLSoft editing software:

Item	System requirements
Operating system	Windows ^{o,R} XP / Vista / 7 (32-bit / 64-bit) / 8 / 10 (64-bit)
CPU	At least Pentium 90
Memory	At least 16 MB (we recommend at least 32 MB)
Hard drive	Hard drive capacity: at least 100 MB of free space
Hard drive	One optical drive (to install this software)
Display	Resolution: 640×480, at least 16 colors; it is recommended that the screen
Display	area be set at 800×600 pixels.
Mouse	Ordinary mouse or Windows-compatible pointing device
Printer	Printer with Windows driver software
RS-485 port	Must have at least an RS-485 port to link to the PLC

16-2 Notes Before Using a PLC

- 1. The MS3 provides two communication serial ports that you can use to download programs to the PLC (see figure below).
- 2. Channel 1 communication format is the same as channel 2.
- 3. Channel 2 has a preset communication format of 7, N, 2, 9600; you can change to ASCII in Pr.09-01 (transmission speed) and Pr.09-04 (communication protocol).
- 4. The PLC preset is node 2; you can change the PLC node in Pr.09-35 (PLC address), but this address may not be the same as the drive's address setting in Pr.09-00 (communication address).

- 5. The host controller can simultaneously access data from the drive and the internal PLC, using the identifier for the node. For instance, if the drive node is 1 and the internal PLC node is 2, then the host controller command depends on the node address
 - 01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in drive Pr.04-00.
 - 02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0.
- 6. The PLC program is disabled when uploading/downloading programs.
- 7. Note that when using WPR commands to write parameters, you may modify values up to a maximum of 10⁶ times; otherwise, after which a memory write error occurs. The number of modifications depends on whether the parameter value has changed. If you do not change the value, it does not change the number of modifications; however, if the entered value is different from before, the number of modifications increases by one.
- 8. When you set Pr.00-04 to 28, the displayed value is the value of PLC register D1043, as shown

- 9. In the PLC Run and PLC Stop mode, you cannot set Pr.00-02 to the values 9 or 10, and cannot be reset to the default value.
- 10. You can reset the PLC to the default value when you set Pr.00-02 to 6.
- 11. The corresponding MI function is disabled when the PLC writes to input contact X.
- 12. When the PLC controls the drive operation, the control commands are entirely controlled by the PLC and are not affected by the setting for Pr.00-21.
- 13. When the PLC controls the drive's Frequency commands (FREQ commands), the Frequency commands are entirely controlled by the PLC, and are not affected by the setting for Pr.00-20 or the HAND ON/OFF configuration.
- 14. When the PLC controls the drive operation, if the keypad STOP setting is valid, this triggers an FStP error and causes the drive to stop.

16-3 Turn on

16-3-1 Connect the Drive to the PC

You start operating the PLC functions with the following four steps:

After pressing the MENU key and choosing <u>4: PLC</u> on the VERSI-KP-LCD digital keypad (optional), press the ENTER key (see figure below).

1. Wiring: Connect the drive's RJ45 communications interface to a PC through the RS-485 cable.

2. PLC function usage

Digital keypad VERSI-KP-LC	D
(optional)	PLC functions are as shown in the figure on the left; select
PLC	item 2. PLC Run to enable the PLC functions.
1.Disable2.PLC Run3.PLC Stop	1: No function (Disable) 2: Enable PLC (PLC Run) 3: Stop PLC functions (PLC Stop)

Chapter 16 PLC Function Applications | MS3

The MS3 automatically switches to PLC mode when the external multifunctional input terminals (MI1–MI7) are in PLC Mode selection bit 0 (51) or PLC Mode selection bit1 (52), and the terminal contact is closed or open. In this case, keypad switching is ineffective. The corresponding actions are listed in the following table.

PLC r	node	PLC Mode selection	PLC Mode selection		
Using VERSI-KP-LCD (optional)	Using VERSI-KP-LED	bit1 (52)	bit0 (51)		
Disable	PLC 0	OFF	OFF		
PLC Run	PLC 1	OFF	ON		
PLC Stop	PLC 2	ON	OFF		
Maintain previous state	Maintain previous state	ON	ON		

Using the MS3 digital keypad to implement the PLC functions

- ☑ When the PLC screen switches to the PLC1 screen, this triggers one PLC action, and you control the PLC program start/stop by communications with WPLSoft.
- ☑ When the PLC screen switches to the PLC2 screen, this triggers one PLC stop, and you control the PLC program start/stop by communications with WPLSoft.
- \square The external terminal control method is the same as shown in the table above.

- When the input/output terminals (MI1–MI7) are included in the PLC program, these input/output terminals are used only by the PLC. For example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (RA/RB/RC) operates according to the program. At this time, the multifunctional input/output terminal setting has no effect. Because these terminal functions are already being used by the PLC, you can determine the DI / DO / AO in use by the PLC by looking at Pr.02-52, 02-53, and 03-30.
- When the PLC's procedures use special register D1040, the corresponding AO contact AFM1 is occupied.
- Pr.03-30 monitors the state of action of the PLC function analog output terminals; bit 1 corresponds to the AFM1 action state.

16-3-2 I/O device explanation

Input devices:

Serial No.	X0	X1	X2	Х3	X4	X5	X6	Х7	X10	X11	X12	X13	X14	X15	X16	X17
1	MI1	MI2	MI3	MI4	MI5	MI6	MI7									

Output devices:

Serial No.	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y10	Y11	Y12	Y13	Y14	Y15	Y16	Y17
1	RY			MO1	MO2											

16-3-3 Installing WPLSoft

See Delta's website where you can download the WPLSoft editing software: <u>http://www.delta.com.tw/product/em/download/download_main.asp?act=3&pid=3&cid=1&tpid=3</u>

16-3-4 Writing programs in WPLSoft

After you install WPLSoft, the WPLSoft program is located in the folder "C:\Program Files\Delta Industrial Automation\WPLSoft x.xx." You can run the editing software by double-clicking the WPL icon.

The WPL editing window appears after three seconds (see figure below). When running WPLSoft for the first time, before you create a new project file, the menu bar shows only **File**, **View**, **Communications**, **Options**, and **Help** menus.

The next time you run WPLSoft, the program opens the last project file you edited. The following picture describes the main parts of the WPLSoft editing window.

To open a new project file, on the Toolbar, click the New button (or press Ctrl+N)

Alternatively, on the File menu, click New (Ctrl+N).

E	e Edir C	lompiler Comm
E	New	Ctrl+N
Ó	<u>O</u> pen	Ctrl+O
	Save	Ctrl+S
T m] Save <u>A</u> s	Ctrl+Alt+S

This displays the **Select a PLC Model** dialog box where you can enter the **Program Title**, **File Name**, and select the device and communication settings.

Select a PLC Mo	del
Program Title	
Model Type	VFD •
Select	VFD E Type 💌
Communication RS232 (COM	VFD E Type VFD-C2000/CH2000/CT2000 VFD-C200
File Name	VFD-CF2000 VFD-MS300
Dvp0	VFD-MH300
OK	Cancel

In the **Communication Setting** dialog box, define the communication settings and then click **OK**.

onnection Setup		
Туре	RS232	-
Communication Sett	ting	2
COM Port	COM6	• ASCII
Data Length	7	C RTU (8 bits
Parity	Even 💌]
Stop Bits	1 💌	Auto-detect
Baud Rate	9600 💌]
Station Address	2	Default
Ethemet Setting		
🗖 Assign IP	21.2	
Port	502	
Baud Rate Decide	ed by	
PLC Setting		
C WPL Setting		
Setup Responding	g Time	1
Times of Auto-ret	try	3
Time Interval of A	Luto-retry (sec.)) 3 1

You can then begin editing the program. There are two program editing methods: you can edit in the command mode, or edit in the ladder diagram mode.

🕃 Dvp0[Test] - Delta WPLSoft	a presented	THE PART OF A DESCRIPTION OF		
<u>File Edit Compiler Comments</u>	Search View C	ommunication Options Wizard Window He	Help	
	0 0 0 13	Q Q Q 0 7 8 0 1	★ ● 3 3	
🖩 🗄 🖉 🖉 🛱 🖬 🖼	8000	19 📰 🖉 😋 🗢 🗊 🖳 😒 🛣 🕅	2.2.2.2.2.5.2.0.0.0.0.2.4	
Relay Type	* * * *	स्त है। की हीई कि सेने की सिंह की 🛄	1 X 2 5 0 0 4 0 4 0 4 0	
	Instruction	1 List Mode	- ICI XI	*
E T Communication Setting	000000	NOP		'n
RS232	000001	NOP		
DVPEN01-SL	000002			
	000003	.sg Ladder Diagram Mode		
IFD9507	000005			
DVPFEN01	000006			
🖻 📓 DirectLink	000007			
USB	000008			
UP Ethemet	000010			
	000011			
	000012			
				н
		•	2 //	
				-
Overwrite Row: 0,	Col: 1	0/10000 Steps	VFD-C2000/CH2000/CT2000 (PLC Station Address: 1)	

In the ladder diagram mode, you can use the buttons on the function icon row on the toolbar.

Dvp0[Test] - Delt	ta WPLSoft	and the second second	Successive Succes	and the subscript of the local division of the local division of the local division of the local division of the	-		
Eile Edit Compile	er Comments	Search View	Communication	Options Wizard	Window	Help	
	a @ X	009/	1099	0 7 1	OI	÷ • 0 *	
🔛 I 🗇 🔮 🛛	0 2 0 5	1200	0 13 15 15	-00.0.0	S chi	TIE	5 🖬 Q Q 🐰 💁
Relay Type	哲推問	世 営 常 4	ने हैंब हैव है	能市市的	He At	1000	
Uvp0[Test] - Delta WPLSoft							
<u>File Edit Compiler Comments S</u>	earch View Communica	tion Options Wizard W	indow <u>H</u> elp				
Palara Tana JL 41 47 49 49							
	F5 F6 F7 F8 F8	FII FI2 NP PN C-D AFS	8-0 20 20 24 57 9 0	n ma de la ce mu			
□ · · · (Communication Setting □ · · · (S32)2 □ Ethernet □ Ethernet □ Ethernet □ Ethernet □ Ethernet □ Ethernet							YO)
Countit Rue 0	Cal-1	0/10000 Store		VEC	C100010121000107	2000/DFC Station & debuse 13	
Overwhite Row. 0, 0		0-10000 Step		VIL		2000 (a 20 Station Promoss, 1)	

Basic Operation

Example: Create the ladder diagram in the following picture.

Γ	MT0	(10	
		(10	
		END	

Use the following steps to create the ladder diagram. These steps show you how to use both the mouse and the keyboard (F1–F12) to add functions.

1. The following picture shows the WPLSoft program after you create a new project file.

2. Add an always-open switch. On the toolbar click the always-open switch button in press F1.

3. In the **Input Device Instruction** dialog box, select the device name (such as **M**), device number (such as **10**) and enter comments (such as **auxiliary coil**). Click **OK** when finished.

Constantly	y opened conta	ct	
)evice Name	м	•	ок
evice Number	10	-	Cancel
atemal Relay			
Range	M0-M4095		
Comment	Internal Relay		

4. Add an output coil. Click the output coil button by or press F7.

In the **Input Device Instruction** dialog box, select the device name (such as **Y**), the device number (such as **0**) and enter comments (such as **output coil**).Click **OK** when finished.

🗑 Dvp0 - Delta WPLSoft - (Ladder D	agram Mode]	- - X
Eile Edit Compiler Comments Se	rch Yiew Communication Options Wizard Window Help	_ @ ×
	1 9 3 4 4 4 0	
III II	日日日日 (11) 日日 (11) 日 (11) 日 (11) 1 (11	QQ展会 〒◎ "
Relay Type 💌 🕂 🏦 🎁 🎁	常好市内市都 市市市新新国建立日	0 📾 😣 🗄 📓 🗛 📾
	nput Device Instruction) Output coil Device Name Y • OK Device Number 0 • Cancel Output Relay Range Y0Y377 Comment Output Coil	
<	11	2
Overwrite Row 8, Col	3/15872 Steps 📕	SA2

5. On the toolbar, click the Application Command button 🛱 or press F6.

In the **Application Instructions** dialog box, in **Instruction Type** drop-down list, select **All Application Instructions**. In the **Application Instruction** drop-down list, select **END**, or use the keyboard to type "END", and then click **OK**.

😫 Dvp0 - Delta WPLSoft -	(Ladder Diagram	Mode)				_ = ×
📲 Eile Edit Compiler Co	mments Search V	iew Communication Options Wizar	nd Window Help			- 8 ×
	X 🖻 🗑 🥑	39990				
8 2 B 2 B 1] 😸 🍠 🖤 🗉	· · · · · · · · · · · · · · · · · · ·	なる アスエー	H Q C	(県)	28 ?
Relay Type 🚽 🏋 🎉	Application Inst	ructions				110
MO	Application I	Instructions				-
	Instruction Type	All Application Instructions		-	OK	
	API Number	Application Instruction	END .	-	Cancel	
	Explanation	Program end	FAND« FAND«= FAND« FAND= FAND» FAND»= FAND»= FEND	-	2	
< Overwrite	ow r. cor r	212572	JOEDS			SA2

6. Compile the program. On the toolbar, click the Compile button to compile the edited ladder diagram into a command program. After compiling, the number of rungs appear on the left side of the busbar.

😫 Dvp0 - De	illa WPLSoft - [Ladder Diag	ram Mode]			
🔁 Eile Edit	t Compiler Comments Search	a <u>T</u> iew <u>Communication</u> <u>O</u> pt	ions Wizard Winds	ow Help	_ 8 ×
0 🖨 🗒	8 00 X 00	9 3 4 4 4 0			
國皇陽	2 12 2 1 2 7 7	9988800	• 🗊 🗐 😵 🛣	· · · · · · · · · · · · · · · · · · ·	Q.R. 2 7 8 3
Relay Type	≤ 許 推 楷 揖 谔 1	常好而尚前腺 请	前的關語	🚥 X 🚾 🕾 🗆 🕯	m 🖂 🗄 🛛 🖬 📾
0		Delta WPLSoft X Compiling is completed			
<					2
-	Overwrite Row 0		3/15872 Steps		SA2

16-3-5 Program download

After you compile your program, download it to the device. Click the Download button . WPLSoft downloads the program to the online PLC in the communication format that you specified for the communication settings.

16-3-6 Program monitoring

After you download the program, confirm that the PLC is in Run mode. On the Communication menu, click Online Mode *a*, and then click **Start Ladder Diagram Control** (see the following picture). This allows you to supervise and operate the ladder diagram while online.

16-4 Basic Principles of PLC Ladder Diagrams

16-4-1 Schematic diagram for PLC ladder diagram program scanning

16-4-2 Introduction to ladder diagrams

Ladder diagrams use a graphic language widely applied in automatic controls. They employ common electrical control circuit symbols. After you use a ladder diagram editor to create a ladder diagram program, the PLC program design is complete. Using a graphic format to control processes is very intuitive and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram mimic common electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as the conventional electrical control circuit elements (such as relays, coils, and contacts), a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1, this may indicate that a coil is electrified; and if that bit is 0, it indicates that the coil is not electrified. You can use a N.O. contact (Normally Open, or contact A) to directly read the value of the corresponding bit, and use a NC contact (Normally Closed, or contact B) to get the inverse of the bit's value. Multiple relays occupy multiple bits, and eight bits comprise one byte. Two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (as in addition/subtraction or displacement), it can use a byte, a word, or a double word. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process numerical values, these values are usually in the form of bytes, words, or double words (internally in the PLC).

The various internal devices in a PLC use a certain amount of memory in the PLC's storage area. When you use these devices, the content of the corresponding storage area is read in the form of bits, bytes, or words.

The following table describes the internal devices in a PLC

Device Type	Description of Function
Input Relay	 An input relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external input point. It serves as a terminal connecting with an external input switch and receiving external input signals. It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay. You cannot use WPLSoft to manually perform ON/OFF actions. You can use a relay's contacts (contacts A and B) an unlimited number of times in a program. An input relay with no input signal must be left idle and cannot be used for some other purpose. ✓ Input devices are indicated by X0, X1, X7, X10, X11, and so on. These devices are indicated with the symbol X, and a device's order is indicated with an octal number. Input point numbers are indicated in the main PLC and in expansion devices.
Output Relay	 An output relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external output point. It connects with an external load. It can be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one N.O. contact to connect with external loads or other contacts, and like the input contacts, you can use the output relay's contacts an unlimited number of times in a program. An output relay with no input signal is idle, but can be used by an internal relay if needed. ☑ Output devices are indicated by Y0, Y1, Y7, Y10, Y11, and so on. These devices are indicated with the symbol Y, and a device's order is indicated with an octal number. Output point numbers are indicated in the main PLC and in expansion devices.
Internal Relay	 Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponds to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. You can use an internal auxiliary relay's contacts an unlimited number of times in a program. Internal relays have no outputs to the outside, and their status must output through an output point. ☑ Internal relay devices are indicated by: M0, M1–M799, and so on. These devices are indicated with the symbol M, and the device's order is indicated with a decimal number.
Counter	Counters perform counting operations. The setting value for a counter (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from OFF → ON, this indicates that the counter receives an input pulse, and adds one to its count. There are 16 bits available in the counter. I Counter device are indicated by: C0, C1–C79, and so on. These devices are indicated by the symbol C, and the device's order is indicated with a decimal number.
Timer	 Timers perform timing for operations. The timer contains a coil, contact, and a time value register. When the coil is electrified, and the setting value for the timer is reached, the contact is actuated (contact A closes, contact B opens), and the timer's fixed value is given by the setting value. A timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact is no longer be actuated (contact A opens, contact B closes), and the original timing value returns to zero. ✓ Timer devices are indicated by: T0, T1–T159, and so on. These devices are indicated by the symbol T, and the device's order is indicated with a decimal number.
Data register	Data registers are used exclusively to store data and various parameters. When you use a PLC is to perform various types of sequence control, set time values, and count value controls, the PLC performs data processing and numerical operations and stores the operands, parameters, and results in data registers. Each data register contains 16 bits of binary data (one word). Two data registers with adjacent numbers can process double words.

Device Type		Description of Function
	Ø	Data register devices are indicated by: D0, D1– D399, and so on. These devices are indicated by the symbol D, and the device's order is indicated with a decimal number.

Ladder diagram images and explanations

Ladder diagram structures	Explanation of commands	Command	Using Device
	N.O. switch, contact A	LD	X, Y, M, T, C
	N.C. switch, contact B	LDI	X, Y, M, T, C
	Series N.O.	AND	X, Y, M, T, C
	Series N.C.	ANI	X, Y, M, T, C
	Parallel N.O.	OR	X, Y, M, T, C
	Parallel N.C.	ORI	X, Y, M, T, C
	Rising edge-triggered switch	LDP	X, Y, M, T, C
	Falling edge-triggered switch	LDF	X, Y, M, T, C
	Rising edge-triggered series	ANDP	X, Y, M, T, C
	Falling edge-triggered series	ANDF	X, Y, M, T, C
	Rising edge-triggered parallel	ORP	X, Y, M, T, C
	Falling edge-triggered parallel	ORF	X, Y, M, T, C
	Block series	ANB	N/A
	Block parallel	ORB	N/A
	Multiple outputs	MPS MRD MPP	N/A
O	Coil driven output commands	OUT	Y, M
	Some basic commands, application commands.	Some basic commands, application commands.	
	Inverted logic	INV	N/A

16-4-3 Overview of PLC ladder diagram editing

The program editing method in WPLSoft begins from the left busbar and proceeds to the right busbar (the right busbar is not visible in WPLSoft). Continue to the next row after completing each row; there are a maximum of 11 contacts on each row. If this is not sufficient, WPLSoft generates a continuous line to indicate the continued connection, so that you can add more devices. A continuous series of numbers is generated automatically and you can use identical input points repeatedly (as shown in the following diagram).

The PLC scans a ladder diagram programs from the upper left corner to the lower right corner. The coils and application command computing box are handled in the output, and in the ladder diagram are placed on the farthest right of a rung. Taking the diagram below as an example, we can analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.

Explanation of

Explanation of basic structure of ladder diagrams

LD (LDI) command: An LD or LDI command appears at the start of a block.

LDP and LDF use this command structure, but there are differences in their action state. LDP, LDF

only act at the rising or falling edge of a conducting contact (see diagram below).

AND (ANI) command: a series configuration in which a single device is connected with one device or a block.

ANDP, ANDF use this structure, but their action occurs at the rising and falling edge of a conducting contact.

OR (ORI) command: a single device is connected with one device or a block.

ORP, ORF use this structure, but their action occurs at the rising and falling edge a conduction contact.

ANB command: a configuration in which one block is in series with one device or block.

ORB command: a configuration in which one block is in parallel with one device or block.

In the case of ANB and ORB operations that connect a number of blocks, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: branching point memory for multiple outputs that enable multiple different outputs. The MPS command begins at a branching point, which refers to the intersection of horizontal and vertical lines. Control relies on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when editing a ladder diagram. You can use the structure of the ladder diagram to judge what kinds of contact memory commands are used.

MPS is indicated by use of the T symbol. You can use this command consecutively up to eight times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other parts of the ladder diagram, the

original contact status must be read. MRD is indicated by the | symbol.

The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop operation); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded. MPP is indicated by the ^L symbol.

Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following diagram.

16-4-4 Common basic program design examples

Start, stop, and protection circuits

Some applications may require a brief close or brief break using a button to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations. This protective circuit may employ one of the following methods.

Example 1: Priority stop protective circuit

When the start N.O. contact X1=ON, and the stop N.C. contact X2=OFF, Y1=ON. If X2 switches to ON, coil Y1 is no longer electrified, and this is therefore referred to as priority stop.

Example 2: Priority start protective circuit

When the start N.O. contact X1=ON, and the stop N.C. contact X2=OFF, Y1=ON, and

coil Y1 is electrified and protected. If X2 switches to ON, coil Y1 still protects the contact and continues to be electrified, and this is therefore referred to as priority start.

Example 3: Setting (SET) and reset (RST) command protective circuit

The following diagram shows a protective circuit composed of RST and SET commands. A priority stop occurs when you place the RST command after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y1 indicates whether coil Y1 is electrified. When X1 and X2 both actuate, Y1

loses power, and this is therefore referred to as priority stop.

A priority start occurs when you place the SET command after the RST command. When X1 and X2 both actuate, Y1 electrifies, and this is therefore referred to as priority start.

Top priority of start

Commonly used control circuits

Example 4: Conditional control

X1 and X3 respectively start and stop Y1; and X2 and X4 respectively start and stop Y2. All have protective circuits. Because Y1's N.O. contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y2. The action of Y1 is therefore a condition for the action of Y2, and Y1 must actuate before Y2 can actuate.

Example 5: Interlocking control

The diagram below shows an interlocking control circuit. Depending on which of the start contacts X1 or X2 becomes valid first, the corresponding output Y1 or Y2 actuates, and when one actuates, the other does not actuate. Y1 and Y2 cannot actuate at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y1 and Y2 to actuate at same time. This ladder diagram assigns priority only to Y1.

Example 6: Sequence control

If the N.C. contact of Y2 in the interlocking control configuration from example 5 is put in series with the Y1 circuit, to create an AND condition for actuation of Y1 (see diagram below), not only is Y1 a condition for the actuation of Y2 in this circuit, but the actuation of Y2 also stops the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.

Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T + \Delta T$

The diagram below shows a very simple ladder diagram. When starting to scan the Y1 N.C. contact, because the Y1 coil has lost power, the Y1 N.C. contact is closed. When the Y1 coil is then scanned, it is electrified, and the output is 1. When the Y1 N.C. contact is scanned in the next scanning cycle, because the Y1 coil is electrified, the Y1 N.C. contact is open, the Y1 coil then loses power, and the output is 0. Following repeated scanning, the output of Y1 coil has an oscillating waveform with a period of $\Delta T(ON)+\Delta T(OFF)$.

Oscillating circuit with a period of nT+ΔT

The ladder diagram shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which causes the output from Y1 to oscillate as shown in the diagram below. The constant n is the timer's decimal setting value, and T is the clock cycle of the timer.

Example 8: Flashing circuit

The following diagram shows an oscillating circuit of a type commonly used to cause an indicator to flash or a buzzer to buzz. It uses two timers to control the ON and OFF time of Y1 coil. Here constants n1 and n2 are the setting values of timers T1 and T2, and T is the clock cycle of the timer.

Example 9: Triggering circuit

In the diagram below, a rising edge in input X0 causes coil M0 to generate a single pulse for Δ T (length of one scanning cycle), and coil Y1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and N.C. contact M0 and N.C. contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0. This again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, and so on. You can see the sequence of these actions in the diagram below. This type of circuit is commonly used to enable one input to perform two alternating actions. You can see from the time sequence in the diagram below that when input X0 is a square wave signal with a period of T, the output of coil Y1 is a square wave signal with a period of 2T.

Example 10: Delay circuit

When input X0 is ON, because the corresponding NC contact is OFF, the timer T10 is in a no power state, and output coil Y1 is electrified. T10 receives power and begins to counter the time only after input X0 is OFF, and output coil Y1 is delayed for 100 seconds (K1000*0.1 sec. =100 sec.) before losing power. You can see the sequence of actions in the diagram below.

Example 11: The open/close delay circuit is composed of two timers; output Y4 has a delay no matter input X0 is ON or OFF.

Example 12: Extended timing circuit

In the circuit in the ladder diagram on the left, the total delay time from the moment input X0 closes to the time output Y1 is electrified is $(n1+n2)^{T}$, where T is the clock cycle. The timers are T11 and T12, and the clock cycle is T.

16-5 Various PLC Device Functions

Item	Specifications	Notes
Algorithmic control	The program is stored internally, alternating	
method	back-and-forth scanning method.	
Input/output control method	When the scan starts again after ending (after execution to the END command), the input/output is immediately refreshed.	
Algorithmic processing speed	Basic commands (several µs);	Application command (1 to several tens of µs)
Programming language	Command + ladder diagram	
Program capacity	2000 steps	
Input/output terminal	Input (X): 10, output (Y): 4	This is the number for MS3 input/output contacts; other devices have different correspondences.

Туре	Device	Item		Range		Function
	Х	External input	relay	X0–X17, 16 points, octal number	Total	Corresponds to external input point
	Y	External outpu	ıt relay	Y0–Y17, 16 points, octal number	points	Corresponds to external output point
Re	М	Auxiliary Relay	General Use Special Surpose	M0–M799, 800 points M1000–M1279, 280 points	Total 1080 points	Contact can switch ON/OFF within the program
lay bit form	т	Timer ⁴	100 ms timer	T0–T79, 80 points	Total 80 points	Timers referred to by the TMR command; T contact with the same number switches ON when the time is reached.
	С	Counter	16-bit counter, general use	C0–C39, 40 points	Total 40 points	Counter referred to by the CNT command; C contact with the same number switches ON when the count is reached.
	Т	Current timer value		T0–T79, 80 points		The contact switches ON when the time is reached.
Register	С	Current counter value		C0–C39, 16-bit counter 40 points		The counter contact switches ON when the count is reached.
word da	D	Data Register	Used to maintain power OFF	D0–D9, 10 points	Total	Used as data storage
ta			Special purpose	D10–D199, 190 points D1000–D1219, 220 points	points	memory area
	к	Decimal	Single-byte	Setting Range: K-32,768-	K32,767	7
Constant			Double-byte	Setting Range: K-2,147,48	3,648-	K2,147,483,647
	Н	Hexadecimal	Double-byte	Setting Range: H0000000	D-HFFF	FFFFF
Serial communication port		RS-485/keypad port				
Input/output		Built-in three analog inputs and two analog outputs				
High-speed counting		Built-in a (MI7) 32-bit high-speed counter				
Function expansion module Optional Accessories		-				
Communication Expansion Module Ad		Optional Accessories	EMC-COP01, (CANopen)			

16-5-1 Introduction to device functions

Input/output contact functions

Input contact X has this function: input contact X is connected with an input device, and reads input signals entering the PLC. There are no restrictions on the number of times that the input contact A or B appear in the program. The ON/OFF state of input contact X changes as the input device switches between ON and OFF; you cannot use a peripheral device (WPLSoft) to force contact X ON or OFF.

Output contact Y functions

The output contact Y sends an ON/OFF signal to drive the load connected to output contact Y. There are two types of output contacts: relays and transistors. There are no restrictions on the number of times that contact A or B of an output contact Y appear in a program, but it is recommended that you use the number of output coil Y only once in a program; otherwise the output state when the PLC performs program scanning is determined by the program's final output Y circuit.

The output of Y0 will be decided by circuit **2**, i.e. decided by On/Off of X10.

Numerical value, constant [K] / [H]

Constant Single-byte Double-byte Single-byte Double-byte	Single-byte	K	Desimal	K-32,768–K32,767
	IX.	Decimal	K-2,147,483,648–K2,147,483,647	
	Single-byte	Н	Hexadecimal	H0000–HFFFF
	Double-byte			H0000000-HFFFFFF

The PLC uses five types of numerical values to implement calculations based on its control tasks; the following topics explain the use and function of the different numerical values.

Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. The following table explains terms related to binary numbers.

bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0.
Nibble	Comprised of a series of 4 bits (such as b3–b0); can be used to express a one-nibble decimal number 0–9 or hexadecimal number: 0–F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7–b0); can express a hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15–b0); can express a hexadecimal number with four nibbles: 0000–FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31–b0); can express a hexadecimal number with eight nibbles: 00000000–FFFFFFFF

The following diagram shows the relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below).

Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers.

Example: External input: X0–X7, X10–X17...(Device number table); External output: Y0–Y7, Y10–Y17...(Device number table)

Decimal Number, DEC

A PLC uses decimal numbers for the following purposes:

- ☑ The setting values of timer T or counter C, such as TMR C0 K50 (K constant).
- ☑ The numbers of devices including M, T, C, or D, such as M10 or T30 (device number).
- ☑ An operand in an application command, such as MOV K123 D0 (K constant).

Binary Coded Decimal, BCD

Uses one nibble or four bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with four nibbles. These are used to read the input value of a rotating numerical switch to input or output a numerical value to a seven-segment display drive.

Hexadecimal Number, HEX

A PLC uses hexadecimal numbers as operands in application commands, such as MOV H1A2B D0 (H constant).

Constant K

PLC's usually prefixed decimal numbers with K, such as K100. This indicates that it is a decimal number with a numeric value of 100.

Exceptions: You can combine K with a bit device X, Y, M, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2–K4 represent 8-, 12-, and 16-bit combinations.

Constant H

PLC's usually prefixed hexadecimal numbers with H, such as in the case of H100. This indicates a hexadecimal number with a numeric value of 100.

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts A and B, and you can use

the output relay contacts any number of times in a program. You can use an auxiliary relay M to configure the control circuit, but cannot use the auxiliary relay to directly drive an external load. There are two types of auxiliary relays:

Ordinary auxiliary relays: ordinary auxiliary relays all revert to the OFF state when a power outage occurs while the PLC is running, and remains in the OFF state when power is restored.

Special purpose auxiliary relays: each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

Timer functions

Timers use 100 ms as their timing unit. When the timing method is an upper time limit, and the current timer value = setting value, the timer output coil is energized. Timer setting values use decimal K values; you can also use the data register D as a setting value.

Actual timer setting time = timing units * set value

Counter features

Item	16-bit counter
Туре	General Type
CT Direction:	Up
Setting	0–32,767
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the setting value, it stops counting.
Output contact	When the count reaches the setting value, the contact switches ON and stays ON.
Reset	The current value reverts to 0 when an RST command is executed, and the contact reverts to OFF.
Contact actuation	All are actuated after the end of scanning.

Counter functions

When a counter's counting pulse input signal switches from OFF to ON, if the counter's current value is equal to the setting value, the output coil switches ON. The setting value can be either a decimal K or a data register D.

16-bit counter:

- ☑ 16-bit counter setting range: K0–K32,767. When K0 and K1 are identical, the output contact is immediately ON during the first count.
- ☑ The current counter value is cleared from an ordinary counter when power to the PLC turns OFF.
- ☑ If you use the MOV command or WPLSoft to transmit a value greater than the setting value to the C0 current value register, when the next X1 switches from OFF to ON, the C0 counter contact changes to ON, and the current value changes to the setting value.
- ✓ You can set a counter's setting value directly using a constant K, or indirectly using the value in register D (not including special data registers D1000–D1199 or D2000–D2799).
- ☑ If the setting value is a constant K, the value must be a positive number. If the setting value is from data register D, the value can be either a positive or negative number. If using a data register, and the current value is 32,767, incrementing the count causes the count value to roll

over to -32,768 as the count continues to accumulate.

- When X0 = ON and the RST command is executed, the current value of C0 reverts to 0, and the output contact reverts to OFF.
- When X1 switches from OFF to ON, the current value of the counter is incremented by one (add one).
- When the count in C0 reaches the set value K5, the contact C0 switches to ON, and the current value of C0 = setting value = K5. Afterwards, additional changes in X1 do not affect the count value, and C0 remains at K5.

16-5-2 Introduction to special relay functions (special M)

R/W column: RO means read only; RW means read and write.

Special M	Function Descriptions	R/W *
M1000	Monitors N.O. contact (contact A). N.O. while RUN, contact A. This contact is ON while in the RUN state.	RO
M1001	Monitors N.C. contact (contact B). NC while RUN, contact B. This contact is OFF while in the RUN state.	RO
M1002	Initiates a forward pulse (the instant RUN is ON). Initial pulse, contact A. Produces a forward pulse when RUN begins; pulse width = scan cycle.	RO
M1003	Initiates a reverse pulse (the instant RUN is OFF). Initial pulse, contact A. Produces a reverse pulse when RUN ends; pulse width = scan cycle.	RO
M1004	Reserved	RO
M1005	Drive malfunction instructions	RO
M1006	Drive has no output	RO
M1007	Drive direction FWD(0) / REV(1)	RO
M1008		
_ M1010		
M1011	10 ms clock pulse, 5 ms ON / 5 ms OFF	RO
M1012	100 ms clock pulse, 50 ms ON / 50 ms OFF	RO
M1012	1 sec. clock pulse, $0.5 \pm 0.1/0.5 \pm 0.000$	RO
M1013	1 min_clock pulse, $30 \pm ON/30 \pm OFF$	RO
M1014	Frequency reached (when used with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018		
M1010		
M1020	Zero flag	RO
M1020	Borrow flag	RO
M1021	Carry flag	RO
M1022	Divisor is 0	RO
M1020		
M1021	Drive frequency = set frequency (ON) Drive frequency = 0 (OFF)	RW
M1026	Drive operating direction FWD (OFE) / REV (ON)	R/W
M1020	Drive Reset	RW
M1027		
M1020		
M1030		
M1031		
M1032		
M1033		
M1034		
M1035		
M1036		
M1037		
M1038	MI7 count begins	RW
M1039	Reset MI7 count value	RW
M1040	Hardware power (Servo On)	RW
M1041		
M1042	Quick Stop	RW
M1043		
M1044	Pause (Halt)	RW
M1045		

Special M	Function Descriptions	R/W *
-		
M1047		
M1048		
M1049		
M1050		
M1051		
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053		
M1054		
M1055		
M1056	Hardware already has power (Servo On Ready)	RO
M1057		
M1058	On Quick Stopping	RO

16-5-3 Introduction to special register functions (special D)

Special	Function Descriptions	R/W *
D		
D1000		
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Iotal program memory content	RO
D1004		
D1009		
D1010	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
D1012	Maximum scan time (units: 0.1 ms)	RO
D1013		
-		
D1017		
D1018	Current integral value	RO
D1019	Force setting for PID I integral	RW
D1020	Output frequency (0.00–599.00 Hz)	RO
D1021	Output current (####.#A)	RO
D1022		
	Communication expansion card number	
	0: No expansion card	
	1: DeviceNet Slave	
D1023	2: PROFIBUS-DP Slave	RO
	3: CANopen Slave	
	4: Modbus-TCP Slave	
	5: EtherNet/IP Slave	
D1024		
-		
D1026		
D1027	PID calculation frequency command (frequency command after PID calculation)	RO
D1028	AVI value (0.00–100.00%)	RO
D1029	ACI value (0.00–100.00%)	RO
D1030		
D1031		
_		
D1034		
D1035	VR value (0.0–100.00%)	RO
D1036	Servo error bit	RO

D1037Drive output frequencyRCD1038DC BUS voltageROD1039Output voltageROD1040Analog output value AFM1 (-100.00–100.00%)RWD1041	0 0 0 0
D1038DC BUS voltageRCD1039Output voltageROD1040Analog output value AFM1 (-100.00–100.00%)RWD1041	0 0
D1039 Output voltage RC D1040 Analog output value AFM1 (-100.00–100.00%) RW D1041	<u>с</u>
D1040 Analog output value AFM1 (-100.00–100.00%) RW D1041	
D1041	N
	-
D1042	
D1043 Can be user-defined (is displayed on panel when Pr.00-04 is set to 28; display RW method is Cxxx)	N
D1044	
D1045	-
D1046	
	-
D1049	
Actual operation mode	
0: Speed	
D1050 1: Position RO	С
2: Torque	
3: Homing Origin	
D1051	-
D1052	-
D1053	-
D1054 MI7 current calculated count value (low word) RO	C
D1055 MI7 current calculated count value (high word) RO	C
D1056 Rotating speed corresponding to MI7 RO	C
D1057 MI7's rotating speed ratio RW	N
D1058 MI7 refresh rate (ms) corresponding to rotating speed RW	N
D1059 Number of nibbles of rotating speed corresponding to MI7 (0–3) RW	N
D1060 Operation mode setting 0: Speed RW	N
D1061 485 COM1 communications time-out time (ms)	N
D1062 Torque command (torque limit in speed mode) RW	N
D1063	_
D1064	-
D1065	
D1066	
D1067	_
D1068	_
D1069	
D1100 Target frequency RC	<u> </u>
D1101 Target frequency (must be operating)	$\overline{0}$
D1102 Reference frequency RC	$\overline{\mathbf{n}}$
D1103	
D1104	
D1105	
D1106	
D1107 π (Pi) low word	0
D1108 π (Pi) high word	<u></u>
D1109 Random number RC	5 C

Device	Range	Туре	Address (Hex)
Х	00–17 (Octal)	bit	0400–040FF
Y	00–17 (Octal)	bit	0500–050F
Т	00–79	bit/word	0600–064F
M	000–799	bit	0800–0B1F
М	1000–1279	bit	0BE8-0CFF
С	0–39	bit/word	0E00–0E27
D	00–199	word	1000–10C7
D	1000–1219	word	13E8–14C3

16-5-4 PLC Communication address

Command codes that can be used

Function Code	Function Descriptions	Function target
H1	Coil status read	Y, M, T, C
H2	Input status read	X, Y, M, T, C
H3	Read single unit of data	T, C, D
H5	Force single coil status change	Y, M, T, C
H6	Write single unit of data	T, C, D
HF	Force multiple coil status change	Y, M, T, C
H10	Write multiple units of data	T, C, D

When PLC functions have been activated, the MS3 can match the PLC and drive parameters; this method uses different addresses for drives (default station number is 1, PLC sets station number as 2).

16-6 Introduction to the Command Window

16-6-1 Overview of basic commands

• Ordinary commands

Command code	Function	OPERAND	Execution speed (μs)
LD	Load contact A	X, Y, M, T, C	0.8
LDI	Load contact B	X, Y, M, T, C	0.8
AND	Connect contact A in series	X, Y, M, T, C	0.8
ANI	Connect contact B in series	X, Y, M, T, C	0.8
OR	Connect contact A in parallel	X, Y, M, T, C	0.8
ORI	Connect contact B in parallel	X, Y, M, T, C	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

Output command

Command code	Function	OPERAND	Execution speed (μs)
OUT	Drive coil	Y, M	1
SET	Action continues (ON)	Y, M	1
RST	Clear contact or register	Y, M, T, C, D	1.2

• Timer, counter

Command code	Function	OPERAND	Execution speed (μs)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Main control command

Command code	Function	OPERAND	Execution speed (µs)
MC	Common series contact connection	N0–N7	0.4
MCR	Common series contact release	N0–N7	0.4

• Contact rising edge/falling edge detection command

Command code	Function	OPERAND	Execution speed (µs)
LDP	Start of rising edge detection action	X, Y, M, T, C	1.1
LDF	Start of falling edge detection action	X, Y, M, T, C	1.1
ANDP	Rising edge detection series connection	X, Y, M, T, C	1.1
ANDF	Falling edge detection series connection	X, Y, M, T, C	1.1
ORP	Rising edge detection parallel connection	X, Y, M, T, C	1.1
ORF	Falling edge detection parallel connection	X, Y, M, T, C	1.1

• Upper/lower differential output commands

Command code	Function	OPERAND	Execution speed (µs)
PLS	Upper differential output	Y, M	1.2
PLF	Lower differential output	Y, M	1.2

• Stop command

Command code	Function	OPERAND	Execution speed (μs)
END	Program conclusion	N/A	0.2

• Other commands

Command code	Function	OPERAND	Execution speed (μs)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
Р	Index	Р	0.3

Command			Fund	ction			
LD	Load contact A	ł					
	X0–X17	Y0-Y17	M0-M799	T0–159	(C0–C79	D0-D399
Operand	✓	\checkmark	✓	✓		\checkmark	-
Explanation	Use the LD co contact circuit contact status Ladder diagra	mmand for co block; its fun in the cumulat m:	ntact A starting ction is to sav tive register.	at the left b ve current c Command	usbar ontent code:	or contact t and save Des	A starting at a the acquired scription:
			Y1)	LD	X0	Load Cor	ntact A of X0
				AND	X1	Create connection of X1	a series on to contact A
				OUT	Y1	Drive Y1	coil
Command			Fund	ction			
LDI	Load contact I	3					
	X0–X17	Y0–Y17	M0-M799	T0–159	(C0-C79	D0-D399
Operand	\checkmark	\checkmark	✓	✓		\checkmark	-
Explanation	Use the LDI command for contact B starting at the left busbar or contact B starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.						
Example	Ladder diagra	m:	-	Command	code:	Des	scription:
		1	Y1	LDI	X0	Load Cor	ntact B of X0
				AND	X1	Create connection of X1	a series on to contact A
				OUT	Y1	Drive Y1	coil

16-6-2 Detailed explanation of basic commands

Command		Function					
AND	Connect conta	nnect contact A in series					
	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399	
Operand	✓	✓	✓	✓	~	-	
Use the AND command to create a series connection to contact A; its function is to first read the current status of the designated series contact and the logical operation results before contact in order to perform "AND" operation; saves the results in the cumulative register.					function is to gical operation results in the		
Example	Ladder diagra	m: 0		Command co	ode: Des (1 Load Cor	scription: ntact B of X1	

Commar	nd code:	Description:
LDI	X1	Load Contact B of X1
AND	X0	Create a series connection to contact A of X0
OUT	Y1	Drive Y1 coil

Command		Function					
ANI	Connect conta	act B in series					
	X0–X17	Y0–Y17	M0-M799	T0–159	(C0–C79	D0–D399
Operand	\checkmark	\checkmark	✓	\checkmark		\checkmark	-
	Use the ANI command to create a series connection to contact B; its function is to					oction is to first	
Explanation	read the curre	ent status of	the designated	l series cont	act a	ind the log	ical operation
	results before	contact in or	der to perform	"AND" opera	ation;	saves the	results in the
	cumulative reg	gister.					
Example	Ladder diagram:			Command of	code:	Des	scription:
			Y1)	LD	X1	Load Cor	tact A of X1
				ANI	X0	Create a connection of X0	series In to contact B
				OUT	Y1	Drive Y1	coil

Command		Function				
OR	Connect conta	Connect contact A in parallel				
	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399
Operand	✓	✓	✓	\checkmark	✓	-

Use the OR command to establish a parallel connection to contact A; its function is to first read the current status of the designated series contact and the logical operation results before contact in order to perform "OR" operation; saves the results in Explanation cumulative register.

Еx	aı	m	зI	e
	u			0

Y1

Commar	nd code:	Description:
LD	X0	Load Contact A of X0
OR	X1	Create a series connection to contact A of X1
OUT	Y1	Drive Y1 coil

Command		Function				
ORI	Connect conta	act B in paralle]			
	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0-D399
Operand	✓	✓	✓	\checkmark	✓	-
Explanation	Use the ORI of first read the of results before cumulative reo Ladder diagra	command to es current status (e contact in c gister. m:	stablish a parall of the designat order to perfor	lel connection ed series cont rm "OR" oper Command co	to contact B; it act and the log ration; saves ode: Des	s function is to gical operation the results in scription:

┥┝ X1

```
Y1
```

Comman	ia coae.	Description.
LD	X0	Load Contact A of X0
ORI	X1	Create a series connection to contact B of X1
OUT	Y1	Drive Y1 coil

Command	Function								
ANB	Series circuit block	Series circuit block							
Operand		N/A							
Explanation	ANB performs an "AND" operation current cumulative register content.	on the	previously	/ save	d logic results and the				
Example	Ladder diagram:	С	command of	code:	Description:				
Example	X0 ANB X1 (Y1)		LD	X0	Load Contact A of X0 Establish a parallel				
	X2 X3		ORI	X2	connection to contact B of X2				
	Block A Block B		LDI	X1	Load Contact B of X1 Establish a parallel				
			OR	Х3	connection to contact A of X3				
			ANB		Series circuit block				
			OUT	Y1	Drive Y1 coil				

Command	Function							
ORB	arallel circuit block							
Operand	N/A							
Explanation	ORB performs an "OR" operation on t cumulative register content. Ladder diagram: X0 X1 Block A Y1 X2 X3 ORB Block B	he previously sa Command LD ANI LDI AND	ved log d code: X0 X1 X2 X3	c results and the current Description: Load Contact A of X0 Establish a parallel connection to contact B of X1 Load Contact B of X2 Establish a parallel connection to contact A of X3				
		OKB	14					
		001	ΥΊ					
Command		Function						
MPS	Save to stack							
Operand		N/A						
Explanation	Saves the current content of the cumu pointer).	ulative register to	the sta	ack (add one to the stack				
Command		Function						

Command	Function
MRD	Read stack (pointer does not change)
Operand	N/A
Explanation	Reads the stack content and saves to the cumulative register (the stack pointer does not change).

Command	Function							
MPP	Read stack	Read stack						
Operand		N/A						
Explanation	Retrieves the isaves to the cu	Retrieves the result of the previously saved logical operation from the stack, and saves to the cumulative register. (subtract one from stack pointer)						
Example	Ladder diagram	<u>ו:</u>			Command	code:	Des	scription:
	MP	s			LD	X0	Load Cor	ntact A of X0
	X0 7	- X1	/		MPS		Save to the	ne stack
	− −−†		\langle	Y1			Create a	series
	MRD -	X2 ──┤ ────	$\overline{\langle}$	MO	AND	X1	connection of X1	on to contact A
					OUT	Y1	Drive Y1	coil
			$\left(\right)$	Y2	MRD		Read the	stack (pointer
			\geq				does not	change)
				END	AND	X2	Create a connectio	series on to contact A
						MO	Drive MO	coil
					MPP	IVIO	Read star	ck
					OUT	Y2	Drive Y2	coil
					END		Program	conclusion
Command		Function						
OUT	Drive coil				T 0 (50			
Operand	X0-X17	Y0-Y17		M0-M799	10–159	(JO-C79	D0-D399
Operand	-	\checkmark		\checkmark	-		-	-
Explanation	Outputs the res element. Coil contact act	ult of the lo	ogic	al operation b	efore the Ol	JT cor	nmand to t	he designated
				Out commar	nd			
	Result:	Coil		Access	s Point:			
		COII	Co	ntact A (N.O.)	Contact B (N.C.)		
	FALSE	OFF	No	ot conducting	Conduct	ing		
	TRUE	ON	(Conducting	Not condu	cting		
							_	
Example	Ladder diagram	1:	$\left(\right)$	VI	Command LD	code: X0	Des Load Cor	scription: ntact B of X0
					AND	X1	connectio	a parallel on to contact A
					OUT	Y1	Drive Y1	coil
Command				Func	tion]
SET	Action continue	s (ON)						
	X0–X17	Y0-Y17		M0-M799	T0–159	(C0-C79	D0-D399
Operand	-	✓		\checkmark	-		-	-
Explanation	Sets the design whether the SE	nated elem T commar	nen [:] nd i	t to ON, and is still driven. I	maintains it Jse the RS	in an T com	ON state, mand to se	regardless of et the element
	Ladder diagram	ו:			Command	code:	Des	scription:
Example	X0 YC)			LD	X0	Load Cor	ntact A of X0
		SE	ΞT	Y1			Establish	a parallel
	1				AN	Y0	connection of Y0	on to contact B
				16-38				

SET Y1 Action continues (ON)

Command			Fund	ction				
RST	Clear contact	or register						
	X0–X17	Y0–Y17	M0-M799	T0–159) C	C79	D0-D399	
Operand	-	✓	\checkmark	\checkmark		\checkmark	\checkmark	
Explanation	Resets the de	signated eleme	ent as describe	ed.				
	Element Mode							
	Y, IVI BOT	Y, M Both coll and contact are set as UFF.						
	T, C cont	T, C contact are set to OFF.						
	D Sets	s the content va	alue to 0.					
	If the RST cor	nmand is not e	xecuted, the s	tatus of the	e design	ated elem	ent remains	
	Ladder diagra	m.		Comman	d code.	Des	cription.	
Example				LD	X0	Load Cor	itact A of X0	
		RST Y5		RST	Y5	Clear the	contact or	
						register		
Command			Fund	ction				
TMR	16-bit timer							
Operand	T-K	T0–T159, K0–	K32,767					
	I-D Electrifies the	10-1159, D0-	-D399 Por coil and th	o timor ho	aine timi	ing The c	ontact's action	
Explanation	is as follows w	hen the timing	value reaches	s the desia	nated se	etting value	e (timing value	
	≥ setting value):							
	N.O. (Norma	ally Open) cont	act Closed					
	If the RST cor	lly Closed) con mmand is not e	tact Open	tatus of the	design	ated elem	ont romains	
	unchanged.		xeculeu, life 3		e design			
Example	Ladder diagra	_adder diagram:			Command code: Description:			
				LD	X0	Load Cor	ntact A of X0	
				TMR	K1000	Set value	as K1000	
Command			Eup	otion				
Commanu			Fund					
			K00 767					
Operand		C0-C79, K0-	-K32,707					
	C-D	C-D C0–C79, D0–D399						
Explanation	When you execute the CNT command from OFF to ON, switch the designated							
	counter coil fr	ecute the CN	IT command to electrified a	from OFF	to ON,	switch th	ne designated	
Explanation	counter coil fr When the co	ecute the CN om no power unt reaches th	IT command to electrified a ne designated	from OFF and add or value (co	to ON, ne to the unt valu	switch th e counter's ie = settir	ne designated s count value. ng value), the	
Explanation	counter coil fr When the co contact has th	ecute the CN om no power unt reaches th e following act	IT command to electrified a ne designated ion:	from OFF and add or value (co	to ON, ne to the unt valu	switch th e counter's ie = settir	ne designated s count value. ng value), the	
	when you es counter coil fr When the co contact has th N.O. (Norma	ecute the CN om no power unt reaches th e following act ally Open) cont	IT command to electrified a ne designated ion: act Closed	from OFF and add or value (co	to ON, ne to the unt valu	switch th e counter's ie = settir	ne designated s count value. ng value), the	
	When you es counter coil fr When the co contact has th N.O. (Norma N.C. (Norma	ecute the CN om no power unt reaches th e following act ally Open) cont lly Closed) con	IT command to electrified a ne designated ion: act Closed tact Open	from OFF and add or value (co	to ON, ne to the unt valu	switch th e counter's ie = settir	ne designated s count value. ng value), the	
	when you es counter coil fr When the co contact has th N.O. (Normal N.C. (Normal After reaching	vecute the CN rom no power unt reaches th e following act ally Open) cont lly Closed) con the count valu	IT command to electrified a ne designated ion: act Closec tact Open le, the contact	from OFF and add or value (co	to ON, ne to the unt valu	switch the counter's ie = settir	unchanged	
	when you es counter coil fr When the coil contact has th N.O. (Norma N.C. (Norma After reaching even with con- count.	tecute the CN or no power unt reaches the following act ally Open) cont ly Closed) con the count valu tinued count po	IT command to electrified a ne designated ion: act Closec tact Open le, the contact ulse input. Use	from OFF and add or value (co I and count the RST c	to ON, ne to the unt valu value bo comman	switch the counter's le = settin oth remain d to restar	ne designated s count value. ng value), the unchanged t or clear the	
	Counter coil fr When the co contact has th N.O. (Norma N.C. (Norma After reaching even with con count. Ladder diagra	ecute the CN om no power unt reaches th e following act ally Open) cont lly Closed) con the count valu tinued count pu m:	IT command to electrified a ne designated ion: act Closec tact Open le, the contact ulse input. Use	from OFF and add or value (co and count the RST c Comman	to ON, ne to the unt valu value be comman d code:	switch the counter's le = settir oth remain d to restar Des	ne designated s count value. ng value), the unchanged t or clear the scription:	
Example	when you es counter coil fr When the co contact has th N.O. (Normal N.C. (Normal After reaching even with con count. Ladder diagra X0	ecute the CN om no power unt reaches th e following act ally Open) cont lly Closed) con the count valu tinued count pu m:	IT command to electrified a ne designated ion: act Closec tact Open le, the contact ulse input. Use	from OFF and add or value (co and count the RST of Comman LD	to ON, ne to the unt value comman d code: X0	switch the counter's le = settir oth remain d to restar Des Load Cor	ne designated s count value. ng value), the unchanged t or clear the scription: ntact A of X0	
Example	when you es counter coil fr When the co contact has th N.O. (Norma N.C. (Norma After reaching even with con count. Ladder diagra X0	cecute the CN or no power unt reaches the following act ally Open) cont lly Closed) con the count valu tinued count po m: CNT C2	IT command to electrified a ne designated ion: act Closec tact Open le, the contact ulse input. Use	from OFF and add or value (co and count the RST of Comman LD	to ON, ne to the unt value comman d code: X0 C2 K100	switch the counter's le = setting oth remain d to restar Des Load Cor C2 count	unchanged t or clear the scription: htact A of X0	

0							
Command	Connect/release a common series contact						
		es contact					
Operand	N0–N7						
Explanation	is executed normally. When the MC command is OFF, any command between MC and MCR						
	and MCR acts as follows:			Description			
	Determination of commands	The timine	walua	Description			
	Ordinary timer	and the co	ntact o	does not operate.			
	Counter	The coil los contact sta	ses po y in th	wer, and the count value and eir current state.			
	Coil driven by OUT command	None recei	ives po	ower.			
	Elements driven by SET, RST commands	They rema	in in th	eir current state.			
	Application commands	None are a	actuate	ed.			
	MCR is the main control stop co program. There may not be any The MC-MCR main control prog with a maximum of only eight lev program example:	ommand, and contact cor ram comma vels; use in	nd is p mmano ands s the or	laced at the end of the main control d prior to the MCR command. upport a nested program structure der N0–N7. Refer to the following			
Example	Ladder diagram:	Comm	nand	Description:			
	X0		e. X0	Load Contact A of X0			
	MC NO		7.0	Connection of N0 common series			
		МС	NO	contact			
		LD	X1	Load Contact A of X1			
	MC N1	OUT	Y0	Drive Y0 coil			
	X3 (V1)	: תו	X2	Load Contact A of X2			
		MC	N1	Connection of N1 common series			
	MCR N1			contact			
			X3 V1	Load Contact A of X3			
	MCR N0		ΤΙ	Drive Fi con			
	X10 MC N0	MCR	N1	Release N1 common series			
		:					
		MCR	NO	Release N0 common series			
	MCR N0		-	contact			
		: D	X10	Load Contact A of X10			
		MC	N0	Connection of N0 common series			
		חו	X11	Load Contact A of X11			
		OUT :	Y10	Drive Y10 coil			
		MCD	NO	Release N0 common series			
		WUCK	INU	contact			

Command	Function							
LDP	Start of rising	Start of rising edge detection action						
	X0–X17	Y0–Y17	M0-	-M799	T0–159		C0–C79	D0–D399
Operand	✓	✓		✓		✓	~	-
Explanation	The LDP command has the same use as LD, but its action is different. Its function is to save the current content while also saving the detected state of the rising edge of the contact to the cumulative register.							
Example	Ladder diagram: $X_0 \qquad X_1$ Y_1			Comn coc	nand le:		Descriptio	on:
				LDP	X0	Start of X0 rising edge dete action		e detection
				AND	X1	Create contac	e a series conn t A of X1	ection to
				OUT	Y1	Drive `	Y1 coil	

Command	Function					
LDF	Start of falling	Start of falling edge detection action				
Operand	X0–X17	Y0–Y17	M0–M799	T0–159	C0–C79	D0–D399
Operand	✓	\checkmark	\checkmark	~	~	-
The LDF command has the same use as LD, but its action is different. Its function is to						
Explanation	save the curre	nt content whi	naives asle a	the detected s	tate of the falli	na edge of the

Explanation save the current content while also saving the detected state of the falling edge of the contact to the cumulative register.

Example

Ladder diagram:	
X0 X1	\frown
	-(Y1)

Command	d code:	Description:
LDF	X0	Start of X0 falling edge detection action
AND	X1	Create a series connection to contact A of X1
OUT	Y1	Drive Y1 coil

Command	Function					
ANDP	Rising edge d	Rising edge detection series connection				
Operand	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399
	✓	\checkmark	✓	\checkmark	✓	-

Explanation Use the ANDP command for a contact rising edge detection series connection.

Example

Ladder diagram: XQ Y1

Comman	d code:	Description:
LD	70	LUAU CUITALLA ULAU
ANDP	X1	X1 Rising edge detection series connection
OUT	Y1	Drive Y1 coil

Command	Function								
ANDF	Falling edge detection series connection								
Onerrord	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399			
Operand	✓	✓	~	~	✓	-			
Explanation Use the ANDF command for a contact falling edge detection series connection.									
Ladder diagram: Command code: Description:									
Example X0 X1				LD	ntact A of X0				
				ANDF	X1 Fallin X1 detection connection	g edge 1 series on			
				OUT	Y1 Drive Y1	coil			
Command			Fund	ction					
ORP	Rising edge d	etection paralle	el connection						
Onerend	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399			
Operand	✓	✓	✓	✓	✓	-			

Explanation Use the ORP command for a contact rising edge detection parallel connection.

Ladder diagram:	
X0	Y1
X1 	

•	•	
Comman	d code:	Description:
LD	X0	Load Contact A of X0
ORP	X1	X1 Rising edge detection parallel connection
OUT	Y1	Drive Y1 coil

Command	Function							
ORF	Falling edge detection parallel connection							
Operand	X0–X17	Y0–Y17	M0-M799	T0–159	C0–C79	D0–D399		
	✓	✓	✓	✓	\checkmark	-		
Explanation Use the ORF command for a contact falling edge detection parallel connection.								
Ladder diagram: Command code: Description:								

Example

Example

J	5 5					
	Comman	d code:	Description:			
	LD	X0	Load Contact A of X0			
	ORF	X1	X1 Falling edge detection parallel connection			
	OUT	Y1	Drive Y1 coil			

Command	Function								
PLS	Upper differen	tial output	1						
Operand	X0–X17	Y0-Y17	M0–M799	T0–159	(C0-C79	D0-D399		
oporaria	-	\checkmark	✓	-		-	-		
Explanation	Upper differential output command: when X0 switches from OFF to ON (rising edge-triggered), the PLS command is executed, and M0 sends one pulse with the pulse length consisting of one scanning period.								
Example	Ladder diagra	m:		Command	l code:	Des	scription:		
		PLS M0		LD	X0	Load Cor	ntact A of X0		
	M0	SET Y0		PLS	MO	M0 Uppe output	r differential		
	Timing diagram	m:		LD	M0	Load Cor	ntact A of M0		
	X0			SET	Y0	Y0 Action	continues		
	M0Time for one scan cycle								
	Y0								
Command	l anna alittanan	4	Fund	ction					
PLF				TO 150			0 0200		
Operand		10-117	1010-101799	10-159		50-679	D0-D399		
	-	✓	✓	-		-			
Explanation	edge-triggered pulse length c	d), the PLF consisting of or	ommand: whe ommand is exe ne scanning pe	n XU switc ecuted, and riod.	mes fr M0 s	om ON to ends one	o OFF (falling oulse with the		
	Ladder diagra	m:		Command	d code:	Des	scription:		
Example		PLF M0		LD	X0	Load Cor	ntact A of X0		
	MO	SET Y0		PLF	MO	M0 Lowe output	r differential		
	Timing diagram	m:		LD	MO	Load Cor	ntact A of M0		
	X0			SET	Y0	Y0 Actior (ON)	n continues		
	M0Time	for one scan cy	/cle						
	Y0								
Command			Fund	ction					
END	End of Progra	m							
Operand			N	/A					
Explanation	An END command must be added to the end of a ladder diagram program or command program. The PLC scans the program from address 0 to								

 \sim the END command, and then returns to address 0 and begins scanning again.

Command	Function					
NOP	No action					
Operand	N/A					
Explanation	The NOP command does not perform execution of this command retains the orig in the following situation: use the NOP com without changing the program length. Ladder diagram:	any (inal lo mand Com	operation in gical operation instead of a mand code:	the program. Because on results, you can use it command that is deleted Description:		
Example	NOP command is simplified and does not display when the ladder diagram	LC	o xo	Load Contact B of X0		
	displays.	NO	P	No action		
		OU	IT Y1	Drive Y1 coil		

Command	Function					
INV	Inverse of operation res	ults				
Operand	N/A					
Explanation	Saves the result of the cumulative register.	e logic inversion	operation pr	ior to th	ne INV command in the	
Example	Ladder diagram:		Comman	d code:	Description:	
	X0 \	— <u>Y1</u>	LD	X0	Load Contact A of X0	
			INV		Inverse of operation results	
			OUT	Y1	Drive Y1 coil	

Command	Function					
Р	Pointer					
Operand	P0–P255					
Explanation Use pointer P as the target in a subprogram call (command API 01 CALL). Using P does not require starting from zero, but the number cannot be used repeatedly; otherwise, an unpredictable error occurs.						
Command code: Description:						Description:
		CALL	P10	LD CALL	X0 P10	Load Contact A of X0 Call command CALL to

	<u> </u>		CALL	P10
P10	X1 ──┨ ──	Ţ	Y1	

LD CALL :	X0 P10	Load Contact A of X0 Call command CALL to P10
P10		Pointer P10
LD	X1	Load Contact A of X1
OUT	Y1	Drive Y1 coil

		Comma	nd code	Р		STE	PS
Classification	API	16 bit	32 bit	command	Function	16 bit	32 bit
	01	CALL	-	✓ V	Call subprogram	3	-
Circuit control	2	SRET	_	-	End a subprogram	1	-
	06	FEND	-	-	End a main program	1	-
	10	CMP	DCMP	 ✓ 	Compare set output	7	13
Send	11	ZCP	DZCP	✓	Range comparison	9	17
comparison	12	MOV	DMOV	✓	Move data	5	9
	15	BMOV	_	✓	Send all	7	_
	20			✓	BIN addition	7	13
-	21	SUB	DSUB	✓ √	BIN subtraction	7	13
Four logical	22	MUI		✓ √	BIN multiplication	7	13
operations	23			✓ √	BIN division	7	13
oporationo	24		DINC	✓ √	BIN add one	3	5
-	25	DEC	DDEC	 ✓	BIN subtract one	3	5
Rotational	30	ROR		· ·	Right rotation	5	
displacement	31	ROI	DROI	· ·	L eft rotation	5	_
displacement			DROL				
Data Process	40	ZRSI	_	✓ 	Clear range	5	-
	49	_	DFLT	✓	binary floating point number to	-	9
Communication	150	MODRW	_	~	Modbus read/write	7	_
	110	-	DECMP	✓	Compare binary floating point numbers	_	13
Four logical operations	111	_	DEZCP	~	Compare binary floating point number range	_	17
	116	-	DRAD	✓	Convert angle to diameter	_	9
	117	-	DDEG	✓	Convert diameter to angle	-	9
	120	_	DEADD	~	Add binary floating point numbers	_	13
	121	_	DESUB	~	Subtract binary floating point numbers	_	13
	122	_	DEMUL	✓	Multiply binary floating point numbers	_	13
	123	_	DEDIV	✓	Divide binary floating point numbers	_	13
	124	_	DEXP	✓	Find exponent of a binary floating point number	_	9
Floating point operation	125	_	DLN	✓	Find natural logarithm of a binary floating point number	_	9
	127	_	DESQR	~	Find the square root of binary floating point number	_	9
	129	_	DINT	✓	Convert binary floating point number to BIN whole number	_	9
	130	_	DSIN	✓	Find the sine of a binary floating point number	_	9
	131	_	DCOS	~	Find the cosine of a binary floating point number	_	9
	132	_	DTAN	✓	Find the tangent of a binary floating point number	_	9
	133	-	DASIN	✓	Find the arcsine of a binary floating point number	_	9
operation	134	_	DACOS	~	Find the arccosine of a binary floating point number	_	9
	135	_	DATAN	~	Find the arctangent of a binary floating point number	_	9
Floating point operation	136	_	DSINH	~	Find the hyperbolic sine of a binary floating point number	_	9

16-6-3 Overview of application commands

		Comma	and code	Р		STE	EPS
Classification	API	16 bit	32 bit	command	Function	16 bit	32 bit
	137	-	DCOSH	~	Find the hyperbolic cosine of a binary floating point number	_	9
	138	-	DTANH	✓	Find the hyperbolic tangent of a binary floating point number	-	9
	160	TCMP	-	✓	Compare calendar data	11	-
	161	TZCP	_	✓	Compare calendar data range	9	-
Calendar	162	TADD	_	✓	Calendar data addition	7	-
	163			 ✓ 	Calendar data subtraction	1	-
	170			v	Capyert BIN to CRAV code	5	
GRAY code	170	GBIN	DGBIN	· · · · · · · · · · · · · · · · · · ·	Convert GRAY code to BIN	5	9
	215	LD&	DLD&	-	Contact form logical operation LD#	5	9
	216	LD	DLD	-	Contact form logical operation LD#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD#	5	9
Contact form	218	AND&	DAND&	-	Contact form logical operation AND#	5	9
logical	219	ANDI	DANDI	-	Contact form logical operation	5	9
	220	AND^	AND^ DAND^		Contact form logical operation	5	9
	221	221 OR& DOR&		-	OR#	5	9
	222	OR	DOR	-	OR#	5	9
	223	OR^	DOR^	-	OR#	5	9
	224	LD =	DLD =	-	Contact form compare LD*	5	9
	225	LD >	DLD >	-	Contact form compare LD*	5	9
	226	LD <	DLD <	-	Contact form compare LD*	5	9
	228	LD < >	DLD < >	-	Contact form compare LD*	5	9
	229	LD < =	DLD < =	-	Contact form compare LD*	5	9
	230	LD > =	DLD > =	-	Contact form compare LD*	5	9
	232	AND =	DAND =	-	Contact form compare AND*	5	9
	233	AND >	DAND >	-	Contact form compare AND*	5	9
comparison	234	AND <	DAND <	-	Contact form compare AND*	5	9
command	236	AND < >	DAND < >	-	Contact form compare AND*	5	9
	237	AND < =	DAND < =	-	Contact form compare AND*	5	9
	238	AND > =	DAND > =	-	Contact form compare AND*	5	9
	240	OR =	DOR =	-	Contact form compare OR*	5	9
	241	OR >	DOR >	-	Contact form compare OR*	5	9
	242	OR <	DOR <	-	Contact form compare OR*	5	9
	244	OR < >	DOR < >	-	Contact form compare OR*	5	9
	245	OR < =	DOR < =	-	Contact form compare OR*	5	9
	246	OR > =	DOR > =	-	Contact form compare OR*	5	9

Chapter 16 PLC Function Applications | MS3

o	4 51	Comma	nd code	Р		STE	PS
Classification	API	16 bit	32 bit	command	Function	16 bit	32 bit
	275	-	FLD =	-	Floating point number contact form compare LD*	-	9
Floating point contact form	276	-	FLD >	-	Floating point number contact form compare LD*	-	9
	277	-	FLD <	-	Floating point number contact form compare LD*	-	9
	278	-	FLD < >	-	Floating point number contact form compare LD*	-	9
	279	-	FLD < =	-	Floating point number contact form compare LD*	-	9
	280	-	FLD > =	-	Floating point number contact form compare LD*	-	9
	281	-	FAND =	-	Floating point number contact form compare AND*	-	9
	282	-	FAND >	-	Floating point number contact form compare AND*	-	9
	283	-	FAND <	-	Floating point number contact form compare AND*	-	9
	284	-	FAND < >	-	Floating point number contact form compare AND*	-	9
Comparison command	285	-	FAND < =	-	Floating point number contact form compare AND*	-	9
	286	-	FAND > =	-	Floating point number contact form compare AND*	-	9
	287	-	FOR =	-	Floating point number contact form compare OR*	-	9
	288	-	FOR >	-	Floating point number contact form compare OR*	-	9
	289	-	FOR <	-	Floating point number contact form compare OR*	-	9
	290	-	FOR < >	-	Floating point number contact form compare OR*	-	9
	291	-	FOR < =	-	Floating point number contact form compare OR*	-	9
	292	-	FOR > =	-	Floating point number contact form compare OR*	-	9
	139	RPR		✓	Read servo parameter	5	_
	140	WPR		✓	Write servo parameter	5	_
	141	FPID		✓	Drive PID control mode	9	_
	142	FREQ		✓	Drive torque control mode	7	_
	262		DPOS	✓	Set target	-	5
	263	TORQ		✓	Set target torque	5	-
Drive special command	261	CANRX	_	~	Read CANopen slave station data	9	-
	264	CANTX		✓	Write CANopen slave station data	9	-
_	265	CANFLS	_	✓	Refresh special D corresponding to CANopen	3	-
	320	ICOMR	DICOMR	✓	Internal communications read	9	17
	321	ICOMW	DICOMW	✓	Internal communications write	9	17

Chapter 16 PLC Function Applications | MS3

16-6-4 Detailed explanation of application commands

API 01 CALL	P (S)	Call a s	ubprogr	am		
bit device X Y M K Notes on operand usage: The S operand can de MS3 series device: The	Word device H KnX KnY KnM T Instrumentary Issignate P. Issignate P. Issignate P. Issignate P. Issignate P.	C D 63.	16-bit con CALL 32-bit con -	nmand (3 STE) Continuous execution type nmand - l: none	P) CALLP -	Pulse execution type
Explanation •	S : Call subprogram pointer.					

- Write the subprogram after the FEND command.
- The subprogram must end after the SRET command.
- Refer to the FEND command explanation and sample content for detailed command functions.

API 02 SRET	P - End a	a subprogram
bit device	Word device	16-bit command (1 STEP)
X Y M	K H KnX KnY KnM T C D	FEND Continuous
Notes on operand usage No operand		32-bit command
A contact-driven co	ommand is not needed.	Flag signal: none
Explanation	A contact-driven command is not r command after CALL command.	needed. Automatically returns next

- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL
- command.
 Refer to the FEND command explanation and sample content for detailed command functions.

AP 10	') [)	CMP	Ρ		<u>(S1</u>)	(S2		\mathbf{D}	C	ompa	are set output
	bit	devi	ice			V	Vord	devic	e			16-bit command (7 STEP)
	X	Y	M	К	Н	KnX	KnY	KnM	T	С	D	CMP Continuous CMPP Pulse
S1				*	*	*	*	*	*	*	*	execution type lexecution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)
D		*	*									DCMP Continuous DCMPP Pulse execution type execution type
Note The	Notes on operand usage: The operand D occupies three consecutive points										Flag signal: none	
Ex	 Explanation S1: Compare value 1. S2: Compare value 2. D: Results of comparison. Compares the size of the content of operand S1 and S2; stores the results of the comparison in D. Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16-bit command, when b15 is 1, this 											
E	Exam	ple		Who X10 rem For Y0-	en tn en X)=OF iain ir ≥, ≤ -Y2.	e des 10=C F, the n the , or s	Signa ON, tł e CM state ≠ coi	ne Cl P cor prior mpari	evice MP c mma r to X ison	omr omr nd do 10=0 resu	D, it and bes r DFF. lts, u	executes, and Y0, Y1 or Y2 is ON. When not execute, and the state of Y0, Y1 and Y2 not execute, and the state of Y0, Y1 and Y2
					X10		Г			10		
					-11		 Y0 ↓	<u>CMF</u> – If I – If I	<pre>^ К <10> <10= <10</pre>	10 D10 D10	D1 Y0 = Y1 =	0 Y0 = On = On
			•	То с	clear	resul	ts of	comp	oariso	on, u	se th	e RST or ZRST command.
					X10 ⊣∕ —		R	ST	M0			ZRST M0 M2

RST M1

M2

RST

API 11 D ZCP	P S1 S2 S D Range comparison
hit device	Word device
X Y M	K H KnX KnY KnM T C D
S1	* * * * * * * * * ZCP Continuous ZCPP Pulse *
S2	* * * * * * * * * * * 32-bit command (17 STEP)
S .	* * * * * * * * * DZCP Continuous DZCPP Pulse
The content value S2 operand.	of operand S1 is less than the content value of
Explanation	(S1): Lower limit of range comparison. $(S2)$: Upper limit of range comparison. (S): Comparative value. (D) : Results of comparison.
•	Compares value \bigcirc with the lower limit \bigcirc and upper limit \bigcirc , and otherweither results of comparison in \bigcirc
-	stores the results of comparison in \bigcirc . When lower limit $(S1)$ > upper limit $(S2)$ the command uses the lower limit
-	(S1) as the upper and lower limit
•	Size comparison is performed algebraically. All data is compared in the form of
	numerical binary values. Because this is a 16-bit command, when b15 is 1, this indicates a negative number.
Example	When the designated device is M0, it automatically occupies M0, M1 and M2. When X0=ON, the ZCP command executes, and M0, M1 or M2 is ON. When X0=OFF, the ZCP command does not execute, and the state of M0, M1 or M2 remains in the state prior to X0=OFF. For \geq , \leq , or \neq comparison results, use series and parallel connections for M0–M2.
	If C10 < K10, M0 = On
	M1 If K10 ≦ C10 ≦ K100, M1 = On
	M2 If C10 > K100, M2 = On
-	To clear results of comparison, use the RST or ZRST command.
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	RST M1
	RST M2
	I

16-bit command (5 STEP)					
Continuous MOVP Pulse					
xecution type execution type					
nand (9 STEP)					
Continuous DMOVP Pulse					
xecution type execution type					
none					
ovement.					
\mathcal{I} . When the command does not execute, the					
ange; if $X0 = ON$, the value K10 is					
an eres if V4 ONI the surrout					
ange; if $X^{T} = ON$, the current					
K10 D0					
T0 D10					
10 010					

AF 15	21 5	B	۸O	/ <mark>P</mark>		S	D) (r	1)	S	end a	all
	bit	devi	се			V	Vord	devic	е			
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	16-bit command (7 STEP)
S						*	*	*	*	*	*	BMOV Continuous BMOVP Pulse
D							*	*	*	*	*	
n				*	*				*	*		<u>32-bit command</u>
Not		opera	nd i	10000.								
n op	perano	d scol	pe n	= 1 t	o 512							Flag signal: none
Ex	plana	ation	•	S leng Sen): Ini th. ds th	tiate ne co	sourc	ce de	vice. regi	D): Ini star	tiate destination device. (n): Send block ting from the initial number of the device
				desi	gnate	ed by	y (<u>s</u>	∫ to	the	n re	giste	rs starting from the initial number of the
				devi rang	ce de je us	esign ed by	ated / that	by (devic	n; ce, se	if the ends	num only	nber of points referred to by n exceeds the points within the valid range.
E	xamp	ole 1	•	Whe D20	en X D23 (10	10=C 3.)N, s	BMC	the	cont	ent	of registers D0–D3 to the four registers K_4 D0 \longrightarrow D20)
_					11							$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
E	xamp	ole 2		Whe mus sour	en se t hav ce a	nding ve th nd de	g fron e sai estina	n des me n ition.	ignat umbe	ted bi er of	t dev nibb	vices KnX, KnY, and KnM, (S) and (D) les, which means n must be identical for
						B	NOV	K1M0	K1)	YO H	<3	$ \begin{array}{c} M0 \\ M1 \\ M2 \\ \end{array} \begin{array}{c} Y0 \\ Y1 \\ Y2 \\ \end{array} \end{array} $
												$\begin{array}{c} M3 \longrightarrow Y3 \\ \hline M4 \longrightarrow Y4 \\ \hline \end{array}$
												$ \begin{array}{c c} M5 & & Y5 \\ \hline M6 & & Y6 \\ \hline M7 & & Y7 \end{array} \ n=3 $
												M8 Y10

M9

M10 M11 Y11 Y12

▶ Y12
▶ Y13

AF 20	') [DD	Ρ		S1	(S2		$\mathbf{\Sigma}$	BI	N ac	ddition		
	hit	dovi	<u></u>			14	lard	dovic				16 hit command (7 STED)		
	DIL	devi	ce	1Z		V	VOID		;e 	0		ADD Continuous ADDP Pulse		
S1	<u> </u>	Y	IVI	*	*	*	*	*	*	*	*	execution type execution type		
S2				*	*	*	*	*	*	*	*			
D							* * * * DADD Continuous DADDP							
Note	es on	opera	and us	sage:	none							Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Refer to the following supplementary explanation		
Ex	plan	ation	•	S1 Add The ins Flag 1. \ 2. \ 3. \ 16-t plus	: Au s (S high licate stanc g cha Wher Wher Wher wher sthe x0	igenc igenc in est es (n e: 3+ in ges in calc in calc in calc N ad conte	d. (S bit o egat (-9)= con culatic culatic culatic culati	2: A S2 f any ive); i-6). necte on re on re on re on re f aug	dder using y dat enat ed wit sults sults sults esults nen X end [nd. \bigcirc g the ca de bles th the are (are (are (are) 0 = 0 D10 in	D: BIN efines the e adc D, the ess f great DN, s n the D1	Sum. I method and stores result in D. s the sign: bit=0 indicates (positive) bit=1 use of algebraic addition operations (for dition. e zero flag M1020 is ON. than -32,768, the borrow flag M1021 is ON. iter than 32,767, the carry flag M1022 is ON. saves the result of the content of addend D0 e content of D20.		
	Rema	ark		Rela 16 -2,	ation: bit: 2 -1, 0 Borro	ship I Zero f -32 -32	oetwo lag 2,768	The of th = 1 (high high (nega	ction: Zero -1, est bita ative)	s and o flag 0 it	d negative/positive numbers: g Zero flag 32,767 0 1 2 The highest bit of the data Carry flag = 0 (positive)		
				32 -2, - Во	2 bit:	Zero -2,147 / flag	flag 7,483,	648 The of th = 1 (Inight h	Ze -1, est bi a itive)	ero fla	ag Zero flag 1 \rightarrow 2,147,483,647 0 1 2 The highest bit Carry flag = 0 (positive)		

AF 2'	2 1	D	SUB	Ρ		(S1)	(S2		\mathbf{D}	BI	IN su	otraction	
bit device Word device								devic	e			16-bit command (7 STEP)	
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	SUB Continuous SUBP Pulse	
S1				*	*	*	*	*	*	*	*	; execution type; ; execution type;	
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)	
D							*	*	*	*	*	DSUB Continuous DSUBP Pulse execution type	
Not	es or	n oper	operand usage: none Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Refer to the following supplementary explanation										
E	 Explanation S1: Minuend. S2: Subtrahend. D: Difference. Subtracts S2 from S1 using the BIN method and stores result in D. The highest bit of any data defines the sign bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic subtraction operations. Flag changes connected with subtraction. When calculation results are 0, the zero flag M1020 is ON. When calculation results are less than -32,768, the borrow flag M1021 is ON. When calculation results are greater than 32,767, the carry flag M1022 is ON. 												
	Exan	 3. When calculation results are greater than 32,767, the carry flag M1022 is ON. ample ■ 16-bit BIN subtraction: When X0 = ON, subtracts the content of D10 from the content of D0, and stores the difference in D20. X0 SUB D0 D10 D20 											

AP 23	 	D	DIV	Ρ		S1	(S2		\mathbf{D}	В	IN di	vision
	bi	t dev	ice			V	Vord	devic	е			16-bit command (7 STEP)
	Х	Y	M	K	Н	KnX	KnY	KnM	T	С	D	DIV Continuous DIVP Pulse
S1				*	*	*	*	*	*	*	*	execution type execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)
D							*	*	*	*	*	DDIV Continuous DDIVP Pulse
Note	es oi	n oper	and u	isage:								: execution type: execution type:
The	16-l	bit cor	nman	d oper	and D	occup	oies tw	o con	secuti	ve poir	nts.	Flag signal: none
Ex	 Explanation S1: Dividend. S2: Divisor. D: Quotient and remainder. Divides S1 by S2 and stores the quotient and remainder in D using the BIN method. The sign bit for S1, S2 and D must be kept in mind when performing a 16-bit operation. 16-bit BIN division: 											
				C	S 1)				<u>(S</u> 2	$\mathbf{)}$		(D) (D)+1
			~	_	\sim						~	
			b1	5		.b00	י [o15		b(b15b00 b15b00
			lf ⁽ cor	D	is a l itive i	bit de units	vice, and y	K1–I ∕ield t	K4 ca he q	an be uotier	desig nt an	gnated as 16 bits, which occupy two d remainder.
E	xan	nple) ■	Whe D10 resu	en X0 in D ilt.)=ON 20, a	, stor and th	res th ne re	e que main	otient der ir	resu 1 D2′	Iting from division of dividend D0 by divisor . The highest bit indicates the sign of the
			•		X0 -			- DI\ - DI\	/	D0	D10 D10	D20 K4Y0

API 24 D	C P			BIN a	dd one
bit device X Y N D Image: second seco	d usage:	Word H KnX Kn *	d device Y KnM T * *	C D * *	16-bit command(3 STEP) INC Continuous INCP Pulse execution type execution type 32-bit command(5 STEP) DINC Continuous DINCP Pulse execution type execution type execution type Flag signal: none NOP Pulse
Explanation	If a D Ger 2,14 Wh	: Destination command is during each nerally use this ing 16-bit ope 17,483,647 +1 en X0 switche X0	device. not the puls s command a ration, 32,76 rolls over to s from OFF t	e execu /cle. as a puls 57 +1 rol -2,147,- to ON, it	ation type, adds 1 to the content of device se execution type command (INCP). Ils over to -32,768. During 32-bit operation, 483,648. automatically adds 1 to the content of D0.
API 25 D DE	C P			BIN su	btract one
bit device X Y M D Notes on operand	A K * d usage:	Word H KnX KnY * * * none	device / KnM T /	C D	16-bit command (3 STEP) DEC Continuous DECP Pulse execution type execution type 32-bit command (5 STEP) DDEC Continuous DDECP Pulse execution type DDEC Continuous DDECP Pulse execution type execution type Flag signal: none Flag signal: none Pulse
Explanation	If a D Ger Dur	: Destination command is during each nerally use this ing 16-bit ope	device. not the puls scanning cy s command a eration, -32,7	e execu /cle. as a puls 68 -1 rc	ution type, adds 1 to the content of device se execution type command (DECP). Ills over to 32,767. During 32-bit operation,
Example	-∠, i ■ Wh	en X0 switche X0	s OFF to ON	, it autoi	matically subtracts 1 from the content of D0.

AP 30) [D	ROR	Ρ		\subset	D) (n		F	Right r	otation	
	bit	de	evice			V	Vord	devic	e			16-bit command (5 STEP)	
	Х	Y	′ M	K	Н	KnX	KnY	KnM	T	С	D	ROR Continuous RORP Pulse	
D							*	*	*	*	*	execution type execution type	
n				*	*							32-bit command (9 STEP)	
Note K4 (KnN n op	es on 16-b I. eran	i op it) i d n	erand u is only =K1-K1	isage: valid i 6 (16-	f the c	peran	nd D is	s desi	gnated	d as	KnY or	DROR Continuous DRORP Pulse execution type execution type Flag signal: M1022 Carry flag	
Ex	plan	mber of bits for one rotation.											
 Rotates the device designated by D to the right n bits. Generally use this command as a pulse execution type command (RORP) When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a right rotation 													
E	xam	nple		Wh con sigr	en X tent nal M X0	0 swi of the 1022	tches e bit	oFf indic	he 16 bits in D10 specify a right rotation; the be diagram below) is sent to the carry flag				
								Rota	te to	the	right		
				D1	u I O O	pper	bit 111	1 0	▶ 1 0 0 :s e rota	lower bit 0 0 1 0 1 → M1022 Carry # flag			
				D1	u 0 0	oper	bit		t 111	o th	e righ	t I 0 1 0 0 ₩ 1022 Carry	

API 31 D ROL	Ρ		n	Left ro	tation
bit device		Word	device		16-bit command (5 STEP)
X Y M D	КН	KnX KnY	KnM T * *	C D * *	ROL Continuous ROLP Pulse execution type execution type execution type
n	* *				32-bit command (9 STEP)
Notes on operand u K4 (16-bit) is only KnM. n operand n=1 to 1	valid if the o	operand D is	s designated	d as KnY o	r DROL Continuous DROLP Pulse execution type execution type execution type Flag signal: M1022 Carry flag
Explanation	D: De Rotates General	evice to be the device ly use this	The provided HTML representation of bits for one rotation. The left $\stackrel{(n)}{\frown}$ bits. The execution type command (ROLP).		
Example	When X content signal M	0 switches of the bit 1022.	s OFF to indicated	the 16 bits in D10 specify a left rotation; the ee diagram below) is sent to the carry flag	
	•			Rot	ate to the left
	M1022 Carry flag M1022 Carry flag		upper bi 1_1_1 upper bi 1_1_1_	it 1 1 1 1 * - t 1 0 0 0	lower bit 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AF 40	ין)	Z	RST	Ρ			01)	D2)		C	Clea	r ra	nge									
	bit	devi	ce			V	Vord	devic	е				16-bit	com	mand	(5 ST	EP)					<u>:</u>
	Х	Y	М	К	Н	KnX	KnY	KnM	Т	С)	ZRS	ST	Conti	nuous	Z	RSTP	1	P	ulse	
D1		*	*						*	*	te	*		Ì	execut	ion typ	Э		e>	kecu	tion typ)e
D2		*	*						*	*		* z	22-hit	com	mand							<u>-</u>
Note Nun Ope the scop	es on ober frand funct <u>be of</u>	of operation of operation of operation of operation of the second	and use erand D D ₂ muse pecifica e usag	age: D_1 op st des ations e. D_1 :	erand signat s table Clea	\leq num the the e for e ar rar	nber o same each o i ge's	f opera type o device initia	and D f devi in se I dev	^{2.} ce. F eries ice.	Refer for t	to he Cle	lag s ar ra	igna ange	l: none e's fina	- al dev	ice	- 			-	
E	Exam	nple		Wh des Whe chai Whe and Whe	ien t signa en X(en X nges en X coil en X	he n ited b is C 1 is C cont 10 is to Of 3 is C	ombe by D ₂ DN, cl DN, 1 act a ON, cl F).	er of is cle lears 6-bit nd co clears	oper ared auxil clear oil to s time the c	anc I. iary s co OFI er T lata	/ rela ount F). T0-T	> ays ers 127 data	num M30 C0– ′ (wr reg	ber 00–N C12 ites istei	of op //399, 27 (wri 0, and rs D0-	eranc chang ites 0, d clea -D100	ges an rs a	2, onl them d clea and ch ets to	y ti ato ars nan 0).	ne (OF and ges	opera F. J conta	nd
								,⊼0 				ZR	ST	M	300	M39	9					
								∧ 				ZR	ST	C	0	C12	7					
												ZR	ST	Т	0	T12	7					
								X3 ┨┠──			-[ZR	ST	۵	00	D10	0					
$\left(\right)$	Rem	ark		Dev	ices	such	as t	oit de	vice `	Y, N	∕I an	id w	ord	dev	ice T,	C, D	car	n inde	epe	nde	ntly u	se

the clear command (RST).

	RST	M0
	RST	то
	RST	Y0

AF 49	יו פו ב)	FLT	Ρ		C	<u>s</u>)(D)		C	onve	rt BIN wh	ole number to	o binary	decimal
	bit	devi	ice			V	Vord	devic	e			16-bit com	nmand		
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D		-	-	-
s		*	*						*	*	*	'L			·'
		*	*						*	*	*	32-bit com	nmand (9 steps)		:
	Notes on operand usage:											Pulse			
Not	Refer to the function specifications table for each device in series														
Rei	Refer to the function specifications table for each device in series														
for the scope of device usage Flag signa												I: none			
The operand D occupies two consecutive points.															
Explanation S: Source device. D: Result device. Converts a BIN whole number into a binary decimal value.															
Example When X11 is ON, converts the whole number corresponding to D0 and D1 into floating point numbers, and stores the result in D20 and D21. X11 DFLT D0 D20															

AP 11(l)	D	ECM	P P		S 1	<u>(S2</u>		D	Co	ompa	are binary floating point numbers		
	bi	t d	evice			V	Vord	devic	e					
	X		Y M	K	Н	KnX	KnY	KnM	T	С	D	16-bit command		
S1				*	*						*			
S2				*	*						*	32-bit command (13 STEP)		
D				*	*						*	DECMP Continuous DECMPP Pulse		
Note The func of de	es or ope tion evice	n o erar sp e u	berand und D oc ecifications age.	usage: cupies ons tab	three ble for	e con: each	secutiv device	/e poi e in se	nts. R ries fo	Refer the	to the scope	Flag signal: none		
Ex	plar	nati	on	S ₁: of (Bina	ary flo pariso	oating on, oc	g poir cupie	nt nur es thi	nber ree c	1. S ; onse	2: Binary floating point number 2. D : Results cutive points.		
			•	Co sto	mpai res t	res bi he re	nary sult c	floati of cor	ing po npari	oint r son (numb (>, =,	er 1 with binary floating point number 2, and <) in D .		
	 If the source operand S₁ or S₂ designates a constant K or H, the command converts the constant to a binary floating point number for the purpose of comparison. When the designated device is M10, it automatically occupies M10-M12. 													
E	xam	nple	, ■	Wł	nen th	ne de	signa	ated	devic	e is l	M10,	it automatically occupies M10-M12.		
				Wł Wł in t	nen X nen X the X	(0=0) (0=0) (0=0)	N, th FF, th FF sta	ne DE ne DE ate.	ECMF ECMF	o cor con	nmai nmar	nd executes, and one of M10–M12 is ON. ad does not execute, and M10–M12 remains		
			•	Fo M1	r≥, 0–M	≤, o 12.	r≠o	comp	ariso	n re	sults	, use series and parallel connections for		
			-	Us	e the	RST	or Z	RST	com	mano	d to c	lear the result.		
				X	0		r—		-		1			
				Η	H			ECMF		D0	D	100 M10		
						M10 		– v	Vhen	(D1,	D0)>	•(D101, D100), M10 is On.		
					-	M11 		– V	Vhen	(D1,	D0)=	(D101, D100), M11 is On.		
						М12 ⊣⊢		_ V	Vhen	(D1,	D0)<	<(D101, D100), M12 is On.		

AF 11	יו 1 נ	E	ZCF	, Р	3	D (<u>52</u> (S	▣	С	ompa	are binary floating point number range
	hit	devi	re l			V	Vord	devic	ص			
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	16-bit command
S1				*	*						*	
S2				*	*						*	۲۲
S				*	*						*	32-bit command (17 STEP)
D		*	*									DEZCP execution type DEZCPP execution type
Note The Refe	es on oper er to he sc	opera and D the fu cope c	and u) occu Inction of dev	sage: upies t n speo ice us	three o cificati age.	conse ions ta	cutive able fo	points or eact	n devic	ce in s	series	Flag signal: none
(E)	qlan	ation)	S ₁ : lim bin cor	Low it for ary f nsecu	ver lir bina loatir utive	nit of ary fl ng po point	bina bating int nu s.	ary flo g poir umeri	ating nt ni cal v	g poi umbe alue:	nt number in range comparison. S_2 : Upper er in range comparison. S : Comparison of s. D : Results of comparison, occupies three
				Co upp	mpai per li	res b mit va	inary alue \$	float S₂ ; st	ing p ores t	oint the r	num esult	ber S with the lower limit value S_1 and the s of comparison in D .
 If the source operand S₁ or S₂ designates a constant K or H, the command converts the constant to a binary floating point number for the purpose of comparison. 												
				Wh as	nen tl the le	ne lo ower	wer li and	mit S uppe	6₁ is g r limit	reat	er tha	an the upper limit \mathbf{S}_2 , the command uses \mathbf{S}_1
E	xam	ple		Wh	nen tł	ne de	signa	ated	device	e is I	MO, it	automatically occupies M0–M2.
)	•	Wh X0: X0:	nen X =OFI =OFI	(0=0 F, the F stat	N, the EZ(te.	e DE. CP c	ZCP (omma	comr and	mano does	executes, and one of M0–M2 is ON. When not execute, and M0–M2 remains in the
				Us	e the	RST	or Z	RST	comr	nanc	d to c	lear the result.
						M0 - M1 - M2		EZCF - V - V	Vhen Vhen)0 (D1, (D1,	D0)	D10 D20 M0 > (D21, D20), M0 is On. ≤ (D21, D20) ≤ (D11, D10), M1 is On.

AF 11	ין 6 ו	D	RAD	Ρ		C	<u>s</u> (Ð			Conve	rt angle	to	o diameter		
	bit	t dev	ice			V	Vord	devic	e			<u>16-bit co</u>	on	nmand		
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	; D	-	ļ	-	-	-
S				*	*						*					·······
D											*	<u>32-bit co</u>	on	<u>nmand (9 STEP</u>)	Pulso
Not	es or	n oper	rand u	sage:	1	1	1					DRAD		execution type	DRADP	execution type
Ref for t	er to the so	the for cope	unction of devi	n spe ice us	cificati age.	ons ta	able fo	or each	n devid	ce i	n series	Flag sigr	na	I: none		
E)	 S: data source (angle). D: result of c Uses the following formula to conver Diameter = Angle × (π/180) When X0=ON, converts the angle of (D1, D0) to radians and stores the floating point number. 										onversic t angles the des result in	on s t sig	i (diameter). o radians. gnated binary (D11, D10);	floating the res	point number ult is a binary	
	X0 DRAD D0 D10 S D1 D0 angle va two deci								ue nal plac	e	5					
	D D 11 D 10 RAD va									D valu o decir	e (angle nal plac	e s	value xπ/180) s)		

AF	יו 7 נ	5	DEG	Ρ		C	S) (D		С	onve	rt diameter to angle
	bit	devi	ice			V	Vord	devic	e			16-bit command
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	
S				*	*						*	
D											*	<u>32-bit command</u> (9 STEP)
Note Refe for t	es on er to he sc	oper the fu cope c	and u unctio of dev	sage: n spe ice us	cificati age.	ions ta	able fc	or eact	n devi	ce in	series	DDEG Continuous DDEGP Puise execution type DDEGP execution type Flag signal: none Flag signal: none Flag signal: none
Ex	çplan	ation		S : Us An	data es th gle =	souro e foll Diar	ce (di owinț neter	iamei g forr ⁻ × (1)	sults	of conversion (angle). t radians to an angle.		
E	xam	ple	•	Wł rac cor	nen X lians nsisti	(0=O is conng of	N, ar onve a bir	ngle o rted nary f	of the to ar loatir	e des n ang ng po	signat gle a pint n	ted binary floating point number (D1, D0) in and stored in (D11, D10), with the content number.
				_` -`	×0 	-[[DEG		D0		D10	
				(\$		D	1	D	0] R bi	AD v nary	ralue floating point
						D 1	1	D	10] A bi	ngle nary	value (RAD value×180/π) floating point

AF 12	יו 0	D	E	ADD) P		S 1	(<u>S</u> 2		D	A	dd bir	nary floating point numbers
	bi	t d	evi	ce			V	Vord	devic	e			16-bit command
	Х	`	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	
S1		_			*	*						*	222 hit commond (0 CTED)
S2					*	*						*	<u>32-bit command</u> (9 STEP)
D												*	DEADD execution type DEADDP execution type
Note Refe	es oi er to	n op the	era e fu	and us nction f devi	sage: n spec	cificati	ons ta	able fo	or eacl	h devic	e in	series	Flag signal: none
Ex	plai	nati	on		S ₁ :	age. add	end.	S₂ : a	ugen	d. D : s	sum	۱.	
				•	Ade des is p	ds th signa perfo	e co ited t rmed	ntent by S ₁ entii	of th , and ely u	ne reg store sing b	iste s th oina	er des ne res ry floa	ignated by S_2 to the content of the register ult in the register designated by D . Addition ating point numbers.
					lf t cor	he s	ourc s tha	e op t con	beran stant	i d S ₁ into a	or (bin	S₂ de nary fl	signates a constant K or H, the command oating point number for use in addition.
				•	In "co the exe	the Intinu regi	situa ious ster on typ	exec perfo	whe ution orms a omma	en S ₁ " com additic ands (I	and mai on c DEA	d S₂ nd is once o ADDP	designate identical register numbers, if a employed, when conditional contact is ON, during each scan. You generally use Pulse) under ordinary circumstances.
E	xan	nple	•		Wh poi	nen X nt nu	(0=O imbe	N, ao r (D3	dds a , D2)	binar , and	y flo stor	oating res th	point number (D1, D0) to a binary floating e results in (D11, D10).
						×0 	D	EADI	D	D0		D2	D10
				•	Wh is a res	nen X auton sults i	(2 =C natica n (D2)N, a ally c 21, D	dds a onvei 20).	a binar rted to	ry flo o a b	oating binary	g point number (D11, D10) to K1234 (which floating point number), and stores the

		DEADD	D10	K1234	D20
--	--	-------	-----	-------	-----

AF 12	יו 1	DE	SUE	3 P		S 1	(<u>S</u> 2		D	Sı	ubtra	ct binary floating point numbers
	bi	t dev	ice			V	Vord	devic	e			16-bit command
	Х	Y	M	К	Н	KnX	KnY	KnM	Т	С	D	
S1				*	*						*	·
S2				*	*						*	<u>32-bit command</u> (13 STEP)
D											*	DESUB execution type DESUBP execution type
Not Ref for t	es or er to he s	n oper the fi cope	rand u unctio of dev	sage: n spe ice us	cificati age.	ions ta	able fo	or each	n devid	ce in s	series	Flag signal: none
E	plar	nation		S ₁:	minu	uend	. S ₂ : :	subtra	ahen	d. D :	diffe	rence.
				Su reg D; If t cor	btrac jister subtr : he s nverts	ts th desi actic ourc s tha	e cor gnate n is p e op t con	ntent ed by perfor peran stant	of th S ₁ , a rmed d S ₁ into a	e reg and s entir or s a bina	giste tores ely u 5₂ de ary fl	r designated by S_2 from the content of the a the difference in the register designated by sing binary floating point numbers. signates a constant K or H, the command oating point number for use in subtraction.
			•	In "cc the exe	the ontinu regi ecutio	situa ious ster p on typ	exec berfoi be co	whe ution ms s mma	en S ₁ " com ubtra inds (and nmar Iction (DES	d S ₂ nd is n onc SUBP	designate identical register numbers, if a employed, when conditional contact is ON, e during each scan. You generally use pulse) under ordinary circumstances.
	Exar	nple		Wł floa	nen > ating	(0=0 poin	N, sı t num	ubtrao ber (cts a (D3, I	bina D2), a	ry flo and s	pating point number (D1, D0) from a binary stores the results in (D11, D10).
					xo I ├──	D	ESU	В	D0		D2	D10
				Wł (wł the	nen X nich i e resu	(2 =0 s au ults ir	DN, s toma ı (D1′	ubtra tically 1, D1	icts th / con 0).	ne bi verte	nary ed to	floating point number (D1, D0) from K1234 a binary floating point number), and stores

I X2				
H ÎF	 DESUB	K1234	D0	D10
1				

AF 12	יו 2	D	EN	IUL	P		<u>S1</u>	<u>(S2</u>		D	М	ultiply	/ binary floating point numbers			
	bi	t de	evic	e			V	Vord	devic	e		16-bit command				
	Х)	(М	K	Н	KnX	KnY	KnM	Т	С	D				
S1		_			*	*						*				
S2					*	*						*	<u>SZ-bit command (13 STEP)</u> Continuous – Pulse			
D												*	DEMUL execution type DEMULP execution type			
Note Refe	es oi er to he s	n op the cop	era fur e of	nd us nctior devi	age: spec ce us	cificati age.	ons ta	able fo	or eacl	h devic	e in	series	Flag signal: none			
E	olar	nati	on		S ₁:	mult	iplica	and. S	S₂ : m	ultiplie	er. D	: pro	duct.			
				•	Mu reg mu If t	ltiplie ister Itiplic he s	es th designation	e co gnate n is p :e op	ntent ed by erforr eran	of th S₂, ar med e nd S₁	nd s nd s ntire or s	egiste tores ely us 6 2 de	r designated by S ₁ by the content of the the product in the register designated by D ; ing binary floating point numbers. signates a constant K or H, the command			
					cor	vert	s that	t con	stant	into a	bin	ary flo	bating point number for use in multiplication.			
	In the situation when S₁ and S₂ designate identical register numbers, if y employ a "continuous execution" command, when conditional contact is ON, t register performs multiplication once during each scan. You generally use put execution type commands (DEMULP) under ordinary circumstances.											esignate identical register numbers, if you nmand, when conditional contact is ON, the during each scan. You generally use pulse) under ordinary circumstances.				
Example When X1=ON, multiplies the binary floating point number (D1, D0) by the floating point number (D11, D10), and stores the product in the r designated by (D21, D20).									loating point number (D1, D0) by the binary and stores the product in the register							
					ŀ	<1 ├──	D	EMU	L	D0		D10	D20			
				•	Wh (wh the	ien > nich i resu	(2 =0 s aut ults in	DN, r toma ı (D1 ⁻	nultip tically 1, D1	olies tl / conv 0).	he t /erte	oinary ed to	r floating point number (D1, D0) by K1234 a binary floating point number), and stores			

	DEMUL	K1234	D0	D10
1				

AF 12	ין 3 נ	D E	DIV	Ρ		<u>S1</u>	<u>(S2</u>		Ð	Di	ivide	binary floating point numbers
	bit	dev	device Word device								16-bit command	
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	
S1				*	*						*	· · · · · · · · · · · · · · · · · · ·
S2				*	*						*	32-bit command (13 STEP)
D											*	DEDIV Continuous DEDIVP Pulse execution type
Notes on operand usage: Refer to the function specifications table for each device in series Flag signal: none for the scope of device usage.											s Flag signal: none	
E	olan	ation		S ₁	: divi	dend.	S ₂ :	divisc	or. D :	quot	tient.	
	Divides the content of the register designated by S ₁ by the content of the register designated by S ₂ and stores the quotient in the register designated by D; division is performed entirely using binary floating point numbers.											
	If the source operand S ₁ or S ₂ designates a constant K or H, the command converts that constant into a binary floating point number for use in division.											

■ When X1=ON, divides the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the quotient in the register designated by (D21, D20).

X1 ─┨┣───	DEDIV	D0	D10	D20
••	52511			

When X2 =ON, divides the binary floating point number (D1, D0) by K1,234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

|--|

Example

API 124	C		EXP	Ρ		C	ne exponent of a binary floating point number									
k	oit	dev	ice	Word device								16-bit command				
X	(Y	М	К	Н	KnX	KnY	KnM	Т	С	; D					
S				*	*						*					
D											*	<u>32-bit command (9 STEP)</u>				
Notes on operand usage:									DEXP execution type DEXPP execution type							
Refer to the function specifications table for each device in series																
	50	oper		ce us	aye.							Flag signal: none				
Explanation S: operation source device. D: operation results device.																
Taking $e = 2.71828$ as a base, S is the exponent in the EXP operation.										is the exponent in the EXP operation.						
■ [D +1, D]=EXP [[] S +1, S []]																
Valid regardless of whether the content of S has a positive or negative value. The designated register D must have a 32-bit data format. Performs to operation using floating point numbers, and converts S to a floating po- number.										content of S has a positive or negative value. st have a 32-bit data format. Performs the numbers, and converts S to a floating point						
					Сс	onten	t of o	perai	nd D :	=e	^s ; e=	2.71828, S is the designated source data.				
Exa	am	ple			WI nur	nen I nber,	M0 is and	ON, store	con s the	ver e re	ts the sult in	value of (D1, D0) to a binary floating point register (D11, D10).				
 When M1 is ON, performs the EXP operation on the exponent of (D1 D10), converts the result to a binary floating point number and stores register (D21, D20). 											EXP operation on the exponent of (D11, nary floating point number and stores it in DFLT D0 D10					
							11									
												END				

AF 12	יו 5 נ)	LN	Ρ		C	S	Ð		Fi	nd th	e natural logarithm of a binary floating point				
	bit	dev	ice			V	Vord	devic	е			16-bit command				
	X	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D					
S				*	*						*	··				
П											*	<u>32-bit command (</u> 9 STEP)				
Note	es on	oper	and us	sage:	rificat	ione ta	ble fr		, devi		sorios	DLN Continuous DLNP Pulse execution type				
for t	he sc	ope o	of devi	ce us	age.						361163	Flag signal: none				
Ex	plana	ation)		S:	oper	ation	sour	ce de	evice	. D : (operation results device.				
			/	•	Та	king	e =2.	7182	8 as	a ba	se, S	is the exponent in the EXP operation.				
					[D) +1,	D]=[EXP	S +1	, S []]						
	Valid regardless of whether the content of S has a positive or negative of The designated register D must have a 32-bit data format. Perform operation using floating point numbers and converts S to a floating number.										content of S has a positive or negative value. It have a 32-bit data format. Performs the umbers and converts S to a floating point					
				•	Co	onten	t of c	perar	nd D	=e ^s	; e=2	2.71828, S is the designated source data				
	Exam	ple)	•	W nur	hen N nber,	M0 is and	s ON, store	con s the	verts e resi	the ult in	value of (D1, D0) to a binary floating point register (D11, D10).				
When M1 is ON, p D10); converts the re (D21, D20).									en M1 is ON, performs the EXP operation on the exponent of (D11); converts the result to a binary floating point number stores it in registe 1, D20).							
				┝	N 	ло 					[DFLT D0 D10				
				\vdash	N	/11 					[DLN D10 D20				
				\vdash								END				

AF 12	יו 7 נ	D ES	QR	Ρ							Find the square root of a binary floating point number							
	bit	devi	се			V	Vord	devic		16-bit command								
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D							
S				*	*						*							
D											*	32-bit command (9 STEP)						
Note	es on	opera	ind us	age:								DESQR execution type P execution type						
Refe	er to t	he tu	nctior f. dovi	spec	ificati	ons ta	ble to	r each										
	16 20	phe o		JE US2	iye.				Flag signal: none									
E	plan	ation		•	S: roo Fir the	soure ot. nds th e res	ce de ne sq ult ir	vice Juare	squa e cor desig	are root is desired D : result of finding square ontent of the register designated by S , stores ignated by D . Square roots are performed								
				•	lf t	he so at cor	ource	e opei t into	rand a bir	S ref	ers t floati	o a constant K or H, the command converts ng point number for use in the operation.						
E	xamp	ole			W (D	hen) 1, DC	X0=C)), an	DN, fi d sto	nds t	the s he re	quar sult i	e root of the binary floating point number n the register designated by (D11, D10).						
					┝	X0 ┨┠──		DE	00	D10								
$ \sqrt{(D1, D0)} \longrightarrow (D11, D10) $ Binary floating point Binary floating point																		

When X2 =ON, finds the square root of K1,234 (which has been automatically converted to a binary floating point number), and stores the results in (D11, D10).

X2			
<u> </u> -1	DESQR	K1234	D10
1			

Γ

AF 12	9 I	D	INT	Ρ		C	S (Ð		Co nu	onve Imbe	rt binary floating point number to BIN whole er	
	bit	dev	ice			V	Vord	devic		:16-bit command			
	Х	Y	M	К	Н	KnX	KnY	KnM	T	С	D		
S											*	···	
D											*	32-bit command (9 STEP)	
Note	s on d	perai	nd usa	de.								DINT Continuous DINTP Pulse	
Refe	r to th	ne fun	ction s	pecific	cation	s table	e for e	ach de	evice i	n seri	es for	execution type : execution type	
the s	cope	of dev	vice us	age.						Flag signal: none			
(E)	kplana	ation		•	S: 1 Co poi The The	the so nverta nt nu e BIN e act	ource s the Imbe I who ion c	regi SIN v ting	erted. D : results of conversion. ister designated by S from a binary floating whole number, and stores the results in D . point number is discarded. the opposite of that of command API 49				
					(FL	.1).							
E	 Example When X0=ON, converts the binary floating point number (D1, D0) into a BIN whole number, and stores the result in (D10); the BIN whole number floating point number is discarded. 												
												DINT D0 D10	

END

AF 13	API D COSH P S D									F	Find th	the hyperbolic cosine of a binary floating point er		
	bit device Word device											16-bit command		
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D			
S				*	*						*	··		
р												<u>32-bit command (9 STEP)</u>		
Not	es or	n oper	and us	sage:	oificat	ions tr	blo fo		DCOSH Continuous DCOSHP Pulse execution type					
for t	Refer to the function specifications table for each device in series Flag signal: none													
E	Explanation S: the designated source (binary floating point number). D: the COSH value result.													
				CC	SH	value	=(e ^s	+e ^{-s})/	2					
E	 Example When X0=ON, finds the COSH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number. 													

AF 13	2 8	D TANH P S D bit device Word device										the hyperbolic tangent of a binary floating point er					
	bit	dev	ice			V	Vord	devic	е			16-bit command					
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D						
S				*	*						*						
D											*	<u>32-bit command (9 STEP)</u>					
Not Ref for t	es on er to the so	the fu	and us unctior of devi	sage: n spe ce us	cificat age.	ions ta	able fo	or each	n devi	series	DTANH Continuous DTANHP Pulse execution type DTANHP execution type Flag signal: none						
E	 Explanation S: the designated source (binary floating point number). D: the TANH value result. TANH value =(e^s-e^{-s})/(e^s+e^{-s}) 																
E	 Example When X0=ON, finds the TANH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number. 																
	X0 DTANH D0 D10																
	S D1 D0 binary floating point																

TANH value binary floating point

D 10

D 11

API 171	D	GBIN	I P			S		C		С	convert GRAY code to BIN				
	bit c	levice			V	Vord	devic	e			16-bit command (5 STEP)				
	X	Y M	К	Н	KnX	KnY	KnM	T	С	D	GBIN Continuous GBINP Pulse				
S			*	*	*	*	*	*	*	*	: execution type : execution type :				
D						*	*	*	*	*	32-bit command (9 STEP)				
Note: Refei for th	s on c to th e sco	perand unction pe of dev	isage: on speo vice us	cificati age.	ons ta	able fo	or each	n devi	ce in :	series	DGBIN Continuous execution type DGBINP Pulse execution type Flag signal: none Flag signal: none Flag signal: none				
Exp	lanat	tion	S : :	sourc	ce de	vice	storir	ng GF	RAY	code	D : device storing BIN value after conversion.				
<u> </u>	 Converts the GRAY code corresponding to the value of the device designated by S that is converted into a BIN value, and stores it in the device designated by D. This command converts the value of the absolute position encoder connected with the PLC's input (this encoder usually has an output value in the form of GRAY) 														
	 This command converts the value of the absolute position encoder connected with the PLC's input (this encoder usually has an output value in the form of GRAY code) into a BIN value, and stores it in the designated register. The valid range of S is as shown below: if you exceed this range, it is an error, and 														
	 code) into a BIN value, and stores it in the designated register. The valid range of S is as shown below; if you exceed this range, it is an error, and the command does not execute. 														
	 The valid range of 5 is as shown below; if you exceed this range, it is an error, and the command does not execute. 16-bit command: 0–32,767 														
			32-	bit c	omm	and:	0–2,	147,4	83,6	47					
Ex	ampl	e 🖉	Wł cor	nen 2 nnect	X20= ted w	ON, rith in	conv put p	verts oints	the X0–	GR X17	AY code of the absolute position encoder to a BIN value and stores it in D10.				
				20		GBIN	1	<4X0		D10					
			GR	AY C	ODE	6513	X17	0 1	010	K4X	0 x0 1 0 0 1 0 0 1				
							b15			$\overline{\mathbb{T}}$	b0				
				H197	71=K	6513	00	0 1	100	0 1 0	0 1 1 1 0 0 0 1				

AF 215 21	기 5- 7 [0	LD#				<u>31</u>) (S 2		С	Contact form logical operation LD#						
	bit	dev	ice			V	Vord	devic	e			16-bit command (5 STEP)	_				
	Х	Y	M	K	H	KnX	KnY	KnM	Т	С	D	LD# Continuous					
S1				*	*	*	*	*	*	*	*	execution type	!				
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)					
S2 S2 <td< td=""></td<>																	

- This command compares the contents of S₁ and S₂. When the result of comparison is not 0, this command activates; when the result of comparison is 0, this command does not activate.
- You can use the LD# command directly to connect with the busbar

API No.	16-bit commands	32-bit commands	Co	ondi acti	tions fo vation	or	C	ondi inact	tions for ivation	
215	LD&	DLD&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
216	LD	D LD	S ₁		S ₂	≠0	S ₁		S ₂	=0
217	LD^	DLD^	S ₁	^	S ₂	≠0	S ₁	^	S ₂	=0

&: logical AND operation.

: logical OR operation.

^: logical XOR operation.

Example

Explanation

- When you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0, then Y10=ON.
- When you compare the content of D200 and D300 with the logical OR operation, and the result is not equal to 0, and X1=ON, then Y11=ON and remains in that state.

218 22	> 3– 0	D	AND#	ŧ —			S1) (<u>S2</u>)		C	ontad	t form logical operation AND#	
	bit	t dev	vice			V	Vord	devic	е			16-bit command (5 STEP)	Ţ
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	AND# Continuous	
S1				*	*	*	*	*	*	*	*	execution type	-
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)]
Not	es or	n ope	erand u	sage:	:#,	: , &, ,	Å ∧		, dovi	co in	corios	DAND# Continuous	
for	the s	cope	of dev	ice us	sage.						50105	Flag signal: none	-

- This command compares the contents of **S**₁ and **S**₂. When the result of comparison is not 0, this command activates; when the result of comparison is 0, this command does not activate.
- The AND# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	Co	ondi acti	tions fo vation	or	C	ondi nact	tions for ivation	
218	AND&	DAND&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
219	AND	D AND	S ₁		S ₂	≠0	S ₁		S ₂	=0
220	AND^	DAND^	S₁	^	S ₂	≠0	S ₁	^	S ₂	=0

&: logical AND operation.

: logical OR operation.

^: logical XOR operation.

Example

Explanation

- When X0=ON and you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0, then Y10=ON.
- When X1=OFF and you compare the contents D10 and D0 with the logical OR operation, and the result is not equal to 0, then Y11=ON and remains in that state.
- When X2 =ON and you compare the contents of the 32-bit register D200 (D201) and the 32-bit register D100 (D101) with the logical XOR operation, and the result is not equal to 0 or M3=ON, then M50=ON.

AF 221 22	ין - 3 [5	OR#				<u>S1</u>) (<u>S2</u>		С	ontac	t form logical operation OR#					
	bit	dev	ice			V	Vord	16-bit command (5 STEP)									
	Х	Y	Μ	K	Н	KnX	KnY	D	OR# Continuous								
S1	А I III III IIII IIII 51								*	*	*	execution type					
S2	S1 S2 * * * * * * * * *										*	* <u>32-bit command (9 STEP)</u>					
Not	Notes on operand usage: #, : , &, , ^										oorioo	DOR# Continuous					
for t	he sc	ope (of dev	ice us	age.			series	Flag signal: none								

- This command compares the contents of S₁ and S₂. When the result of comparison is not 0, this command activates; when the result of comparison is 0, this command does not activate.
- The OR# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands	Co	ondi acti	tions fo vation	or	C	ondi inact	tions for ivation	
221	OR&	DOR&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
222	OR	D OR	S ₁		S ₂	≠0	S ₁		S ₂	=0
223	OR^	DOR^	S ₁	^	S ₂	≠0	S ₁	^	S ₂	=0

&: logical AND operation.

: logical OR operation.

^: logical XOR operation.

Example

Explanation

- When X1=ON or you compare the contents of C0 and C10 with the logical AND operation, and the result is not equal to 0, then Y0=ON.
- When X2 and M30 are both equal to ON, or you compare the contents of the 32-bit register D10 (D11) and the 32-bit register D20 (D21) with the logical OR operation, and the result is not equal to 0, or you compare the contents of the 32-bit counter C235 and the 32-bit register D200 (D201) with the logical XOR operation, and the result is not equal to 0, then M60=ON.

AF 224 23	API 224- 230 D LDX				<u>S1</u> <u>S2</u>						Contact form compare LD*				
	bit device Word device										16-bit command (5 STEP)				
X Y M K H KnX KnY KnM T C E							KnY	D	LDX Continuous						
S1				*	*	*	*	*	*	*	*	execution type			
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: ※,: , =, >, <, <>, ≤, ≥							<, <>,		DLD X Continuous						
Ref for	Refer to the function specifications table for each device in series for the scope of device usage.											Flag signal: none			

S₁: data source device 1. **S**₂: data source device 2.

- This command compares the contents of **S**₁ and **S**₂. Taking API 224 (LD=) as an example, this command activates when the result of comparison is "equal," and does not activate when the result is "unequal."
- You can use the LD* directly to connect with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	LD =	D LD =	$S_1 = S_2$	$S_1 \neq S_2$
225	LD >	D LD >	$S_1 > S_2$	$S_1 \leq S_2$
226	LD <	D LD <	$S_1 < S_2$	$S_1 \ge S_2$
228	LD < >	D LD < >	$S_1 \neq S_2$	$S_1 = S_2$
229	LD < =	D LD < =	$S_1 \leq S_2$	$S_1 > S_2$
230	LD > =	D LD > =	$S_1 \ge S_2$	$S_1 < S_2$

Example

Explanation

When the content of C10 is equal to K200, then Y10=ON.

When the content of D200 is greater than K-30, and X1=ON, then Y11=ON and remains in that state.

Explanation

AF 232 23	ν 	A	ND>	« –			<u>S1</u>) (S 2		C	contac	ct form compare AND*	
bit device Word device										16-bit command (5 STEP)	3		
X Y M K H KnX KnY KnM T C							KnY	KnM	D	AND Continuous	į		
S1				*	*	*	*	*	*	*	*	execution type	
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)	3
Notes on operand usage: ※,: , =, >, <, <>, ≤, ≥						<, <>,	1	DAND X Continuous					
Ref for t	Notes on operand usage: $\chi, : , =, >, <, <>, \leq, \geq$ Refer to the function specifications table for each device in series for the scope of device usage.											Flag signal: none	

S₁: data source device 1. **S**₂: data source device 2.

■ This command compares the contents of **S**₁ and **S**₂. Taking API 232 (AND=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.

The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND =	D AND =	$S_1 = S_2$	$S_1 \neq S_2$
233	AND >	D AND >	$S_1 > S_2$	$S_1 \leq S_2$
234	AND <	D AND <	$S_1 < S_2$	$S_1 \ge S_2$
236	AND < >	D AND < >	$S_1 \neq S_2$	$S_1 = S_2$
237	AND < =	D AND < =	$S_1 \leq S_2$	$S_1 > S_2$
238	AND > =	D AND > =	$S_1 \ge S_2$	S _{1 <} S ₂

Example

When X0=ON and the current value of C10 is also equal to K200, then Y10=ON. When X1=OFF and the content of register D0 is not equal to K-10, then Y11=ON

and remains in that state.
 When X2 =ON and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=ON, then M50=ON.

Al 24 24	API S1 S2 Conta 240- 246 S1 S2 Conta					ontac	t form compare OR*						
bit device Word device								devic	16-bit command (5 STEP)				
X Y M K H KnX KnY KnM T C						KnY	KnM	D	OR Continuous				
S1				*	*	*	*	*	*	*	*	execution type	
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)	
Notes on operand usage: ※,: , =, >, <, <>, ≤, ≥						<, <>,	≤, ≥	1		DOR X Continuous			
Refer to the function specifications table for each device in series for the scope of device usage.									Flag signal: none				

```
Explanation S<sub>1</sub>: data
```

- This command compares the contents of S_1 and S_2 . Taking API 240 (OR=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.
- The OR* command is a comparison command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR =	D OR =	$S_1 = S_2$	$S_1 \neq S_2$
241	OR >	D OR >	$S_1 > S_2$	$S_1 \leq S_2$
242	OR <	D OR <	$S_1 < S_2$	$S_1 \ge S_2$
244	OR < >	D OR < >	$S_1 \neq S_2$	$S_1 = S_2$
245	OR < =	D OR < =	$S_1 \leq S_2$	$S_1 > S_2$
246	OR > =	D OR > =	$S_1 \ge S_2$	$S_1 < S_2$

Example

- When X0=ON and the current value of C10 is also equal to K200, then Y10=ON.
 When X1=OFF and the content of register D0 is not equal to K-10, then Y11=ON and remains in that state.
- When X2 =ON and the content of the 32-bit register D0 (D11) is less than 678,493, or M3=ON, then M50=ON.

AF 275 28	API 275– 280 FLD ※			*	<u>S1</u> <u>S2</u>					Fl	Floating point number contact form compare LD*				
bit device Word device <u>16-bit command</u>										16-bit command					
	X Y M K H KnX KnY KnM T C D								D						
S1									*	*	*				
S2									*	*	*	<u>32-bit command (9 STEP)</u> Continuous			
Not	Notes on operand usage: ※,: , =, >, <, <>, ≤, ≥								FLD execution type						
Ref for	Refer to the function specifications table for each device in series or the scope of device usage.									Flag signal: none					

- S_1 : data source device 1. S_2 : data source device 2.
- This command compares the contents of **S**₁ and **S**₂. Taking "FLD=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FLD* command can directly input floating point numbers (for instance: F1.2) to the S₁, S₂ operands, or store floating point numbers in register D for use in operations.
- You can use this command while directly to connect with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
275	FLD =	$S_1 = S_2$	$S_1 \neq S_2$
276	FLD >	$S_1 > S_2$	$S_1 \leq S_2$
277	FLD <	S ₁ < S ₂	$S_1 \ge S_2$
278	FLD < >	$S_1 \neq S_2$	$S_1 = S_2$
279	FLD < =	$S_1 \leq S_2$	$S_1 > S_2$
280	FLD > =	$S_1 \ge S_2$	S ₁ < S ₂

Example

Explanation

When the floating point number in register D200 (D201) is less than or equal to F1.2, and X1 is activated, then contact Y21 activates and remains in that state.

AF 28 28	> 1– 6	F	AND	*	_	(S1)	(S2)		Fl	oatin	g point number contact form compare AND
	bit	t dev	ice			V	Vord	devic	е			16-bit command
	X Y M K H KnX KnY KnM T							KnM	Т	С	D	
S1									*	*	*	·
S2									*	*	*	32-bit command (9 STEP) Continuous
Not	es or	n opei	rand u	sage:	Ж,	:,=,>	, <, <>	>, ≤, ≥				execution type
Ref for	er to the so	the f	unctio of dev	n spe ice us	cificat age.	ions ta	able fo	or each	n devi	ce in :	series	Flag signal: none
				c .	data	0011			1 6	. dat		Iron dovino 2

1: data source device 1	. S₂ : data s	source device 2	2.
-------------------------	----------------------	-----------------	----

- This command compares the contents of S_1 and S_2 . Taking "FAND=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FAND* command can directly input floating point numbers (for instance: F1.2) to the S_1 and S_2 operands, or store the floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND =	$S_1 = S_2$	$S_1 \neq S_2$
282	FAND >	$S_1 > S_2$	$S_1 \leq S_2$
283	FAND <	S ₁ < S ₂	$S_1 \ge S_2$
284	FAND < >	$S_1 \neq S_2$	$S_1 = S_2$
285	FAND < =	$S_1 \leq S_2$	$S_1 > S_2$
286	FAND > =	$S_1 \ge S_2$	S ₁ < S ₂

Example

T

Explanation

When X1=OFF, and the floating point number in register D100 (D101) is not equal to F1.2, then Y21=ON and remains in that state.

X1						
<u>—И</u>	FAND<>	F1.2	D0		SET	Y21
				-		

AF 287 29	2	F	OR }	RX (S1) (S2) F			FI	oatin	ating point number contact form compare OR*				
bit device Word device										16-bit command			
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D		
S1									*	*	*		
S2									*	*	*	32-bit command (9 STEP)	
Not	es or	oper	and u	sage:	ж,:	, =, >,	<, <>,	≤, ≥				FOR * execution type	
Ref for t	Refer to the function specifications table for each device in series for the scope of device usage.											Flag signal: none	

- This command compares the contents of **S**₁ and **S**₂. Taking "FOR=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FOR* command can directly input floating point numbers (for instance: F1.2) to the S₁, S₂ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
287	FOR =	$S_1 = S_2$	$S_1 \neq S_2$
288	FOR >	$S_1 > S_2$	$S_1 \leq S_2$
289	FOR <	S ₁ < S ₂	$S_1 \ge S_2$
290	FOR < >	$S_1 \neq S_2$	$S_1 = S_2$
291	FOR < =	$S_1 \leq S_2$	$S_1 > S_2$
292	FOR > =	$S_1 \ge S_2$	S ₁ < S ₂

Example

Explanation

When X2 and M30 are both equal to ON, or the floating point number in register D100 (D101) is greater than or equal to F1.234, then M60=ON.

API 139	API RPR S1 S2					R	Read servo parameter										
	bit de	evice			V	Vord	devid	e			16	bit comr	nand (P	STEP)			!
S1	X Y	′ M	K *	H *	KnX	KnY	KnM	Т	С	D			Continu execution		PRP	Pulse xecution typ	
S2										*							
Notes	s on op	erand u	sage:	none									nana		-	_	
											Fla	g signal:	none				·'
Exp	lanatio	on	(S1 read): Pa d is s	aram toreo	eter d.	addro	ess c	of dat	ta to	be	read.(<u>S2</u> : F	Register	where	data that	is
AP	יו 0	- N	VPR	Ρ		(5	61) (<u>S2</u>)		W	/rite :	servo p	aramet	er			
	bi	t devic	е			W	ord o	devic	е	16-bit command (5 STEP)							
S1	Х	Y	M	K *	H *	KnX	KnY	KnM	Т	С	D *	WPR	Con execu	tinuous ition type	WPRP	Pulse execution	type
S2				*	*						*	32-bit c	ommand	<u>1</u>			·····)
Notes	s on op	erand u	sage:	none	<u>I</u>	<u> </u>		1	1		1	- Flag sig M1017	nal: M10 paramete	-)16 paran er written	- neter rea success	- d/write error, fully.	,
Explanation S1: Data to write to specified page. S2: Parameter address of data to written. Example When the data in the MS3 drive's parameter H01.00 is read and written to data from H01.01 is read and written to D1. When M0=ON, the content of D10 is written to the MS3 drive Pr.04.00 speed of multiple speed levels). When M1017=ON, the parameter has been written successfully. The MS3's WPR command does not support writing to the 20XX address the RPR command supports reading of 21XX, 22XX. M1000 Normally open contact of operatide monitoring (a) WPR D10 H101 D1								D0, (first									

16-6-5 Detailed explanation of drive special application commands

Recommendation Be cautious when using the WPR command. When writing parameters, most parameters are recorded when they are written, and these parameters may only be revised 10⁶ times: a memory write error may occur if parameters are written more than (MS)10⁶ or (MH)10⁹ times.

The number of times a parameter is written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

AF 14	ין 1	F	PID	Ρ	S	1) (§	32) (S 3	(S4)	Dri	ve F	PID con	trol mode	!		
	bit	devi	ice			V	Vord	devic	e			16-bit c	ommand (9 STEP)		i
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D	FPID	Continu	Jous FPI		ulse
S1				*	*						*	!	execution	птуре	execu	lion type
S2				*	*						*	<u>32-bit c</u>	ommand			
S 3				*	*						*		l		·	
S4 Not	es on	oper	and u	* *	*						*	Flag sig	nal: none			
Notes on operand usage: none Explanation S1: PID reference tal proportional gain P. proportional gain P. The FPID command can Terminal Selection of P Integral Time (I), and Pr. When M0=ON, the set P PID function), the PID futtime I is 1 (units: 0.01 structure). When M1=ON, the set P PID function), the PID futtime I is 1 (units: 0.01 structure). When M1=ON, the set P PID function), the PID futtime I is 1 (units: 0.01 structure). When M1=ON, the set P PID function integral time When M2=ON, the set P PID function integral time PID function integral time Differential time Differential time Differential time						arget S3 : PID I r.08-(PID r funct sec.) PID r Sec.) PID r is cc (uni time	value PID ectly c Feedb 3 Diff referention referention s 0, and referention s 0, are ontrolle ts: 0.0 e D is 0 d after	e in fun contri- back ferer nce opol the nce pro- the end th ence tho ()1), 1 0. r PIE	put ter ction in col the c , Pr.08 ntial Tin target v rtional (PID fu target v portion e PID fu target v portion e PID fu target pi be targe nrough the PID	minal selentegral til drive's PIE -01 Proper ne (D). value inpur gain P is unction dif value inpur function dif talue inpur the digita of function	ection. (S me I. (S D feedbac ortional G of terminal 0, the PIE ferential t I terminal P is 1 (ifferential put termi I keypad) integral ti	PID PID PID PID PID k control F ain (P), F selection function ime D is nal select the PID me I is 0,	function function Pr.08-00 Pr.08-02 is 0 (no integral 1 (units: is 0 (no 01), the 0. ion is 1 function and the			
				_					-['	FPID		H0	H0	H1	H1	
				Ν	И1 				-	FPID		H0	H1	H0	H0	
				Ν	И2 				-[]	FPID		H1	H1	H0	H0	
			M1000 MOV D1027 D1													
									_		_					

END

API 142	REC	2 P		(S1)	(S2) (S	3)	Dr	ive s	peed	control	mode			
bit dev	vice			V	Vord o	devic	e			16-bi	t comman	d (7 STE	P)		
X Y	M	K *	H *	KnX	KnY	KnM	Т	С	D *	FRE	Q Co	ntinuous ution type	FREQ	P execu	ulse tion type
S2		*	*						*	32-bi	t comman	d			
S3		*	*						*	-		-	-		-
Notes on ope	rand u	sage:	none	1						Flags	signal: M1	015			
 (S1): Frequency command. (S2): Acceleration time. (S3): Deceleration time S2,S3: In the acceleration and deceleration time settings, the number of decimal places is determined by the definition in Pr.01-45. Example When Pr.01-45=0: units of 0.01 sec. A setting of S2=50 (acceleration time) in the ladder diagram below implies 0.5 sec., and the S3 (deceleration time) setting of 60 implies 0.6 sec The FREQ command can control drive Frequency commands, and acceleration and deceleration time. It also uses special register control actions, such as: M1025: Control drive RUN(ON)/STOP(OFF) (RUN requires Servo On (M1040 ON) to be effective) M1026: Control drive operating direction FWD(OFF)/REV(ON) M1040: Control Servo On/Servo Off. M1042: Trigger Quick Stop (ON)/does not trigger Quick Stop (OFF). M1044: Pause (ON)/release pause (OFF) 															
Example		M10 dire Whacc Whacc Pr.0 Wha M ⁻ M M M M M	D25: ction elera en M celera 01-45 en M 1000 111 112 112 113 114 114 114 114	Drive FWI 10=C tion a 111=C 5=0). 11=C	RUN D(OFI DN, se and de DN, se time o DFF, th	l (ON F)/RI ecele ets th of 50 ne dr	$\frac{1}{M} = \frac{1}{M} = \frac{1}$	$\begin{array}{c} \text{OP} ((1) \\ \text{N}) \\ \text{Perfection} \\ \text{resc.} \\ \text{eque} \\ \begin{array}{c} 025 \\ 026 \\ 040 \\ 042 \\ 044 \\ 052 \\ 040 \\ 042 \\ 044 \\ 052 \\ 040 \\ 052 \\ 050 \\ 05$	DFF) 1101 equered equered and ency of o	, M1(5: free ncy c 0. dece comn	D26: driv quency i command eleration nand cha	re operat reached. d K3000 (; d K3000 time of 6 anges to	ing 3.00 H; (30.00 50 (0.6 0.	z) with a) Hz), wi s sec.) (v	an ith an when
					J		FR	EQ	K3	000	K50	K60			
								٦D							

Pr.09-33 are defined on the basis of whether reference commands have been cleared before the PLC operation

Chapter 16 PLC Function Applications | MS3

- bit 0: Prior to PLC scanning procedures, acts on whether the target frequency has been cleared to 0. This is written to the FREQ command when the PLC is ON.
- bit 1: Prior to PLC scanning procedures, acts on whether the target torque has been cleared to 0. This is written to the TORQ command when the PLC is ON.
- bit 2: Prior to PLC scanning procedures, acts on whether speed limits in the torque mode have been cleared to 0. This is written to the TORQ command when the PLC is ON.

Example: When using r to write a program,

If we force M0 to 1, the frequency command is 20.00 Hz; but when M0 is set to 0, there is a different situation.

- Case 1: When the Pr.09-33 bit 0 is 0, and M0 is set as 0, then the frequency command remains at 20.00 Hz.
- Case 2: When the Pr.09-33 bit 0 is 1, and M0 is set as 0, then the frequency command changes to 0.00 Hz

This is because when the Pr.09-33 bit 0 is 1 prior to PLC scanning procedures, the frequency first reverts to 0.

When the Pr.09-33 bit 0 is 0, the frequency does not revert to 0.

Code	ID	Description	Recommended error resolution
PLod	50	Data writing memory error	Check whether the program has an error and download the program again.
PLSv	51	Data write memory error during program execution	Cycle the power and download the program again.
PLdA	52	Program transmission error	Try uploading again; if the error persists, send it to the manufacturer for service.
PLFn	53	Command error while downloading program	Check whether the program has an error and download the program again.
PLor	54	Program exceeds memory capacity or no program.	Cycle the power and download the program again.
PLFF	55	Command error during program execution	Check whether the program has an error and download the program again.
PLSn	56	Check code error	Check whether the program has an error and download the program again.
PLEd	57	Program has no END stop command.	Check whether the program has an error and download the program again.
PLCr	58	MC command has been used continuously more than nine times.	Check whether the program has an error and download the program again.
PLdF	59	Download program error	Check whether the program has an error and download again.
PLSF	60	PLC scan time excessively long	Check whether the program code has a writing error and download again.

16-7 Error Display and Handling

*ID: Warning code

16-8 Explanation of PLC Speed Mode Control

The following tables describe the control mode and setting. These are the register tables for speed mode.

Control special M

Special M	Function Description	Attributes
M1025	Drive frequency = set frequency (ON) / drive frequency = 0 (OFF)	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick Stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Function Description	Attributes
M1015	Frequency reached (when used with M1025)	RO
M1056	Hardware already has power (Servo On Ready)	RO
M1058	On Quick Stopping	RO

Control special D

Special D	Function Description	Attributes
D1060	Mode setting (speed mode is 0)	RW

Status special D

Special D	Function Description	Attributes
D1037	Drive output frequency (0.00–599.00 Hz)	RO
D1050	Actual operation mode (speed mode is 0)	RO

Speed mode control commands:

FREQ(P)	S1	S2	S3

Target speed	The first acceleration time setting	The first deceleration time setting
--------------	-------------------------------------	-------------------------------------

Example of speed mode control:

Before using speed control, if you use the FOC (magnetic field orientation) control method, you must first complete the setting of the electro-mechanical parameters.

- 1. Setting D1060 = 0 shifts the drive to speed mode (default).
- 2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
- 3. Setting M1040 = 1, the drive is now excited, but the frequency is 0.
- 4. Setting M1025 = 1, the drive Frequency command now jumps to the frequency designated by FREQ, and acceleration and deceleration is controlled on the basis of the acceleration time and deceleration time specified by FREQ.
- 5. Use M1052 to lock the current operation frequency.

- 6. Use M1044 to temporarily pause the operation, and the deceleration method uses the deceleration settings.
- 7. Use M1042 to perform Quick Stop, and deceleration is as fast as possible without causing an error. There may still be a jump error if the load is too large.
- Control user rights: M1040 (Servo ON) > M1042 (Quick Stop) > M1044 (Halt) > M1052 (LOCK)

16-9 Count Function Using Pulse Input

16-9-1 High-speed count function

The MS3's MI7 supports one-way pulse counting with a maximum speed of 33 k. The starting method is very simple, and only requires setting M1038 to begin counting. The 32-bit count value is stored in D1054 and D1055 in non-numerical form. M1039 resets the count value to 0.

% When the PLC program defines MI7 for use as a high-speed counter, that is, when M1038 or

M1039 is written in PLC procedures, other functions of MI7 are disabled.

16-9-2 Frequency calculation function

Apart from high-speed counting, the MS3's MI7 can also convert a received pulse to a frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which the MS3 can perform simultaneously.

PLC speed calculation formula

D1057 Speed

D1058 Interval between calculations

D1059 Decimal places

Assume that there are five input pulses each second, (see figure below) we set D1058 = 1000 ms = 1.0 second as the calculation interval. This enables five pulses to be sent to the drive each second.

Time Interval between calculations

Assume that each five pulses correspond to 1 Hz, we set D1057 = 5.

Setting D1059 = 2 displays numbers to two decimal places, which is also 1.00 Hz. The numerical value displayed at D1056 is 100. For simplicity, the D1059 conversion formula can be expressed in the following formula:

D1058= $\frac{\text{Pulses per second}}{\text{D1057}} \times \frac{1000}{\text{D1057}} \times 10^{\text{D1059}}$

[This page intentionally left blank]

