

Thyristorregler
SGP 160-2,5/4/8P/16P
Montage- und Inbetriebnahme Anleitung

**Thyristorregler
SGP 160-2,5/4/8P/16P

**Thyristo

Qualität ist unser Antrieb.

Stand 10/20 12300.10000

Inh	altsverzeichnis	Seite	
1.	Sicherheitshinweise	5	
2.	Konformität		
3.	Allgemeine Beschreibung		
4.	Bestimmungsgemäße Verwendung	6	
5.	EG-Konformitätserklärung	7	
6.	Blockschaltbild	8	
7.	Funktionsbeschreibung	8	
8.	Elektrische Daten	9	
	8.1 Umweltbedingungen	9	
9.	Einbau	10	
	9.1 Anschluss	10	
	9.2 Leistungsteil	10	
	9.3 Steuerteil 9.3.1 Option "P" 10	10	
10.	Parametereinstellungen	11	
	10.1 An- und Auslauframpe	11	
	10.2 Maximaldrehzahl	11	
	10.3 Minimaldrehzahl	11	
	10.4 I x R Kompensation bei Ankerspannungsregelung10.5 Strombegrenzung Imax	11 11	
	10.6 Anpassung des Widerstandes R21 für Tachometerregelung	11	
	10.7 Beschaltung des Drehzahlreglers	12	
11.	1. Anzeigen		
12.	2. Abhilfe bei Störungen		
13.	Aufbaurichtlinien	14	
	13.1 Anschlussplan SGP 160-2,5 (P) /4 (P)	14	
	13.2 Anschlussplan SGP 160-8P/16P	15	
	13.3 Maßblatt	16	
	13.4 Funkentstörung und Schirmung	17	
	13.5 Aufbau 13.6 Schirmung	17 17	
	13.7 Verkabelung	18	

Diese Inbetriebnahmeanleitung wurde mit größter Sorgfalt erstellt. Dennoch übernimmt die Firma PETER electronic GmbH & Co. KG keine Haftung für Schäden, die aus eventuell enthaltenen Fehlern resultieren. Technische Änderungen, die einer Verbesserung des Produktes dienen. behalten wir uns vor.

Entsorgungsanweisungen

Das Gerät enthält elektrische Bauteile und darf nicht über den Hausmüll entsorgt werden. Es muss separat gemäß den lokalen und aktuell geltenden Bestimmungen für Elektro- und Elektronikmüll entsorgt werden.

Verwendete Symbole und Abkürzungen

Hinweis: Hinweise erläutern Vorteile bestimmter Einstellungen und helfen Ihnen, den optimalen Nutzen aus dem Gerät zu ziehen.

Warnhinweise: Lesen und befolgen Sie diese sorgfältig!

Warnhinweise sollen Sie vor Gefahr schützen oder Ihnen helfen, eine Beschädigung an dem Gerät zu vermeiden.

Achtung: Lebensgefahr durch Stromschlag!

Wenn Sie dieses Zeichen sehen, dann prüfen Sie stets, ob das Gerät spannungsfrei und gegen versehentliches Einschalten gesichert ist.

1. Sicherheitshinweise

Die beschriebenen Geräte sind Betriebsmittel, die in industriellen Starkstromanlagen eingesetzt werden. Unzulässiges Entfernen von Abdeckungen während des Betriebes kann schwere gesundheitliche Schäden verursachen, da in diesen Geräten spannungsführende Teile mit hohen Spannungen vorhanden sind.

Einstellarbeiten dürfen nur von unterwiesenem Personal unter Berücksichtigung der Sicherheitsvorschriften vorgenommen werden. Montagearbeiten dürfen nur im spannungslosen Zustand erfolgen.

Achten Sie auf eine ordnungsgemäße Erdung aller Antriebskomponenten.

Bevor Sie das Gerät in Betrieb nehmen, lesen Sie bitte sorgfältig diese Inbetriebnahmeanleitung. Der Anwender hat zudem sicherzustellen, dass die Geräte und die dazugehörigen Komponenten nach öffentlichen, gesetzlichen und technischen Vorschriften montiert und angeschlossen werden. Für Deutschland gelten die VDE-Vorschriften VDE 0100, VDE 0110 (EN 60664), VDE 0160 (EN 50178), VDE 0113 (EN 60204, EN 61310), VDE 0660 (EN 50274) sowie entsprechende Vorschriften von TÜV und Berufsgenossenschaften.

Es muss vom Anwender sichergestellt werden, dass nach einem Ausfall des Gerätes, bei einer Fehlbedienung, bei Ausfall der Steuereinheit usw. der Antrieb in einen sicheren Betriebszustand geführt wird.

Achtung: Auch wenn der Motor steht, ist er nicht galvanisch vom Netz getrennt.

2. Konformität

Die Antriebsregler vom Typ SGP... werden im industriellen Sprachgebrauch als "Geräte" bezeichnet, sind aber keine gebrauchs- oder anschlussfähigen Geräte oder Maschinen im Sinne des "Gerätesicherheitsgesetzes", des "EMV-Gesetzes" oder der "EG-Maschinenrichtlinie", sondern Komponenten. Erst durch Einbindung dieser Komponenten in die Konstruktion des Anwenders wird die letztendliche Wirkungsweise festgelegt.

Der bestimmungsgemäße Betrieb der Geräte setzt Stromversorgungsnetze gemäß DIN EN 50160 (IEC38) voraus.

Die Übereinstimmung der Konstruktion des Anwenders mit den bestehenden Rechtsvorschriften liegt im Verantwortungsbereich des Anwenders.

Die Inbetriebnahme ist solange untersagt, bis die Konformität des Endproduktes mit den Richtlinien 2006/42/EG (Maschinen-Richtlinie) und 2006/95/EG (Niederspannungsrichtlinie) festgestellt ist.

3. Allgemeine Beschreibung

Die elektronischen Drehzahlregler SGP 160-2,5/4/8P/16P werden zur Drehzahlregelung von Gleichstrom-Nebenstrommotoren mit Fremd- und Permanenterregung eingesetzt. Die Regler zeichnen sich durch große Drehzahlstabilität, unabhängig von Temperatur-, Spannungs- und Belastungsschwankungen aus. Die Regler SGP 160-2,5/4/8P/16P bieten vielfältige Einstellmöglichkeiten wie Minimal- und Maximaldrehzahl, Hoch- und Rücklaufzeit, Strombegrenzung, sowie IxR - Kompensation. Da der Regler mit netzpotentialfreien Steuereingängen ausgerüstet werden kann, ist eine externe Ansteuerung leicht möglich.

4. Bestimmungsgemäße Verwendung

Die Geräte der Reihe SGP 160-2,5/4/8P/16P sind elektrische Betriebsmittel zum Einsatz in industriellen Starkstromanlagen. Sie sind für den Einsatz in Maschinen zur Steuerung von drehzahlveränderbaren Antrieben mit Gleichstrommotoren konzipiert.

Bevorzugte Einsatzbereiche

- Förderanlagen
- Druckmaschinen
- Pumpen
- Drehtischantriebe
- Schweißdrahtvorschübe
- Verpackungsmaschinen

5. EG-Konformitätserklärung

CE EG-Konformitätserklärung

Der Hersteller / Inverkehrbringer

(in der Gemeinschaft niedergelassene Bevollmächtigte des Herstellers / Inverkehrbringer)

Name / Anschrift: PETER electronic GmbH & Co. KG

Bruckäcker 9 92348 Bera

erklärt hiermit, dass folgendes Produkt (Gerät, Komponente, Bauteil) in der gelieferten

Ausführung

Produktbezeichnung: Thyristorregler

SGP 160-2,5/4/8P/16P Serien- / Typenbezeichnung:

Artikelnummer: 223... Bauiahr: 1999

den Bestimmungen folgender EU-Richtlinien entspricht:

2014/30/EU über die elektromagnetische Verträglichkeit

2014/35/EU betreffend elektrische Betriebsmittel zur Verwendung innerhalb

bestimmter Spannungsgrenzen

zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe 2011/65/EU

in Elektro- und Elektronikgeräten

Folgende harmonisierte Normen wurden angewendet:

Niederspannungsschaltgeräte EN 60947-1:2015-09

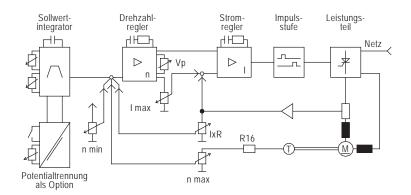
Allgemeine Festlegungen

Niederspannungsschaltgeräte EN 60947-4-2:2013-05

Schütze und Motorstarter - Halbleiter-Motor-Steuergeräte

(Unterschrift)

und Starter für Wechselspannungen


Diese EG-Konformitätserklärung verliert ihre Gültigkeit, wenn das Produkt ohne Zustimmung umgebaut oder verändert wird.

Der Unterzeichner trägt die alleinige Verantwortung für die Ausstellung dieser Erklärung.

Berg, 18.04.2016 Dr. Thomas Stiller, Geschäftsführer (Ort, Datum)

(Unterzeichner und Funktion des Unterzeichners)

6. Blockschaltbild

7. Funktionsbeschreibung

Drehzahlsollwert

Die Sollwertspannung beträgt 0...10VDC. Der Sollwert kann entweder mittels Potentiometer oder extern eingespeist werden. Durch Parallelschalten eines 500 Ohm Widerstandes an die Sollwerteingangsklemmen kann ein Sollwert von 0...20mA eingespeist werden. Mit dem Sollwertintegrator kann eine zeilineare An- und Auslaufzeit realisiert werden.

Drehzahlregler

Der Drehzahlregler ist wahlweise für Tachometerregelung oder Ankerspannungsregelung mit einstellbarer IxR Kompensation ausgelegt.

Stromregler

Der Stromregler erzeugt die Steuerspannung für die Impulsstufe. Überschreitet der Stromistwert den eingestellten Stromsollwert, so wird die Motorspannung zurückgenommen. Dadurch wird verhindert, dass der Motor und der Antrieb überlastet wird.

Impulsstufe

In der Impulsstufe werden die Steuerimpulse für die Thyristoren erzeugt. Ihre Länge vom Zündzeitpunkt bis zum nächsten Spannungsnulldurchgang ermöglicht einen sicheren Bertieb des Gerätes auch bei hochinduktiver Belastung.

Leistungsteil

Das Leistungsteil besteht aus einer einphasigen, halbgesteuerten Brückenschaltung, sowie einer Erregerspannungsquelle. Die Schaltung enthält zusätzlich Maßnahmen zum Schutz der Leistungshalbleiter gegen Überspannungen.

SGP 160-2,5/4/8P/16P	9
----------------------	---

8. Elektrische Daten

	SGP 160-2,5	SGP 160-4	SGP 160-8P	SGP 160-16P
Betriebsspannung gem. DIN EN 50160 (IEC38)	230V ±15% 50/60Hz			
max. Motorwellenleistung	0,25kW	0,37kW	0,9kW	1,8kW
Ankerspannung	0 18		80VDC	
eff. Ankerstrom	2,5A	4A	8A	16A
Erregerspannung/-strom	200V / 0,5A		200V / 1A	
Regelungseigenschaften bei IxR Kompensation bei Tachometerregelung	1:30 / ±3% 1:100 / ±1%			
Sollwerteingang	0 - 10VDC / netzpotentialfrei mit Option "P" 5 - 10k Ohm Potentiometer			
Istwerteingang	12 - 300VDC je nach Anpassung werkseitig angepasst auf 160V Ankerspannung			
Gerätesicherung (intern)	4A 6,3A		160mA / 2x 20A	
Anschluss	16 polie Klemmleiste		Steuerteil: 16pc Leistungsteil: 6	ol. Klemmleiste pol. Klemmleiste
Anschluss Option "ST"	31 polige Stiftleiste DIN 41617			-

8.1 Umweltbedingungen

Betriebstemperaturbe- reich	0 45°C nicht betauend
Lagertemperatur	-25 75°C
Kühlung	Konvektion
temperaturabhängige Leistungsreduzierung	2%/°C oberhalb 45°C max. 55°C
Schutzklasse	IP 00
Montageort	Überspannungskategorie III, Verschmutzungsgrad 2

9. Einbau

Das Gerät ist bei Ausnutzung der Nennleistung auf einer senkrechten Montagefläche, Klemmleiste nach links oder rechts, zu montieren. Unterhalb des Gerätes dürfen keine zusätzlichen Wärmequellen wie Heizkörper oder Leistungswiderstände angeordnet sein.

Abmessungen und Befestigungslöcher siehe Maßblatt.

Verschiedene Hersteller bieten Leiterplattenhalter zur Montage auf der DIN-Schiene oder direkten Befestigung auf der Montageplatte an.

9.1 Anschluss

Das Gerät darf nur nach beigefügten Anschlussplan angeschlossen werden.

9.2 Leistungsteil

(in Klammer bei Steckerausfürung nach DIN 41617 nur für SGP 160-2,5/4)

SGP 160-2,5/4	SGP 160-8/16P	
Anschluss 16 (1, 2)	220V 50/60Hz	Netz Phase L
Anschluss 8 (17, 18)	220V 50/60Hz	Netz Mittelpunktsleiter N
Anschluss 10 (13, 14)	+A	Anker A+
Anschluss 12 (9, 10)	+C	Feldwicklung F+
Anschluss 13 (7, 8)	-D	Feldwicklung F-
Anschluss 14 (5, 6)	-B	Anker -B

9.3 Steuerteil

Anschluss 1 (31)	Reglersperre 24V	Bei geöffnetem Kontakt ist
Anschluss 2 (29, 30)	Reglersperre Eingang	der Regler gesperrt
Anschluss 3 (27, 28)	Sollwertpotentiometer 10VDC	
Anschluss 4 (25, 26)	Sollwerteingang 0 10VDC	
Anschluss 5 (23,24)	Sollwertpoti Fußpunkt	
Anschluss 6 (21,22)	Istwerteingang	

9.3.1 Option "P"

Mit der Option "P" sind die Steuerklemmen für die Reglerfreigabe und den Sollwert potentialfrei ausgeführt und können an geerdete Systeme angeschlossen werden.

Achtung!

Es wird keine sichere Trennung erreicht.

10. Parametereinstellungen

10.1 An- und Auslauframpe

Durch Verstellen des Trimmers t_{int} (P2) kann man die An- und Auslaufzeit zwischen 0 ... ca. 5s einstellen. Bei Betätigung der Reglersperre wird der Anlaufintegrator zurückgesetzt.

10.2 Maximaldrehzahl

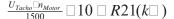
Mit dem Trimmer n_{max} (P3) kann die max. Ankerspannung zwischen 90...180V begrenzt werden.

10.3 Minimaldrehzahl

Mit dem Trimmer n_{min} (P4) wird die Minimaldrehzahl auf 0 ... 50% der eingestellten Maximaldrehzahl begrenzt.

10.4 Ix R Kompensation bei Ankerspannungsregelung

Das Einstellen der Kompensationsspannung erfolgt mit dem Trimmer I x R (P1). Eine Rechtsdrehung entspricht einer verstärkten Kompensation. Das Einstellen sollte bei betriebswarmem Motor durchgeführt werden. Dabei wird der Antrieb auf ca. 50% der Nenndrehzahl eingestellt, so weit wie möglich entlastet, und die Drehzahl gemessen.


Danach wird der Antrieb belastet und der dabei auftretende Drehzahlabfall mit dem Trimmer P1 ausgeglichen. Danach ist die Wirkung der Kompensation bei minimaler und maximaler Drehzahl zu kontrollieren und gegebenenfalls nachzustellen. Auf jeden Fall ist eine Überkompensation, d. h. eine Drehzahlerhöhung bei Belastung, zu vermeiden, da sonst der Antrieb instabil wird. Bei Tachometerregelung bleibt das Potentiometer P1 auf Linksanschlag.

10.5 Strombegrenzung I_{max}

Die Strombegrenzung wird mit dem Potentiometer I_{max} (P5) in der Regel so eingestellt, daß der maximal erforderliche Strombedarf für Anfahren und Beschleunigen gedeckt wird. Bei Getriebemotoren ist darauf zu achten, daß das Grenzdrehmoment des Getriebes nicht durch Einstellung eines zu hohen Grenzstromes überschritten wird.

10.6 Anpassung des Widerstandes R21 für Tachometerregelung

Bei Betrieb des Reglers mit einem Gleichstromtacho kann es nötig sein, den Widerstand R21, je nach Höhe der Tachometerspannung bei Nenndrehzahl, anzupassen. Es sollten grundsätzlich nur Widerstände mit einer Belastbarkeit von 1 Watt verwendet werden. Der Trimmer I x R steht auf Linksanschlag. Mit nachfolgender Formel können Sie den Widerstandswert ermitteln.

U_{Tacho} = Spannungswert des Gleichstromtachos in Volt je 1000 Umdrehungen

n_{Motor} = Nenndrehzahl des Motors bei U_{Anker} max.

Der errechnete Widerstand ist in k Ohm einzusetzen.

10.7 Beschaltung des Drehzahlreglers

Die Beschaltung des Drehzahlreglers ist so dimensioniert, daß der Regler ohne Änderung der Beschaltung für die meisten Antriebsfälle eingesetzt werden kann. Bei extremen Antriebsfällen, z.B. sehr großen Schwungmassen der Arbeitsmaschinen, kann es jedoch notwendig werden, die werkseitige Beschaltung zu ändern.

Bezeichnung	werkseitige Bestückung	Funktion
R27	560k Ohm	Einstellung der P-Verstärkung Durch Vergrößern des Widerstandswertes erhöht sich die P-Verstärkung
C17	2,2μF	Einstellung der I-Verstärkung Durch Vergrößerung der Kapazitätverlängert sich die Nachregelzeit

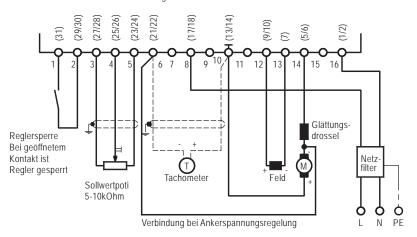
11. Anzeigen

Es befinden sich zwei LED's auf der Leiterplatte zur optischen Statusmeldung. grüne LED: Regler ist betriebsbereit die Versorgungsspannung ist vorhanden.

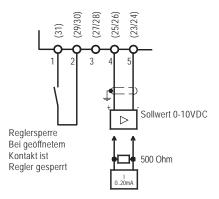
rote LED: Reglerfreigabe ist offen und Motor ist angehalten.

SGP 160-2,5/4/8P/16P	13
----------------------	----

12. Abhilfe bei Störungen

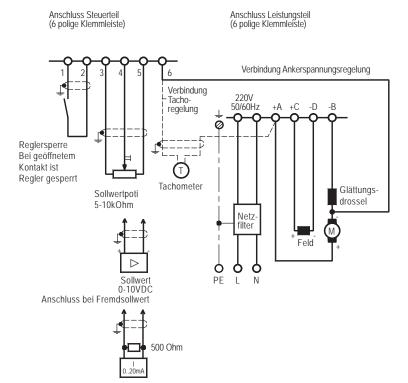

Die Geräte sind so konzipiert, daß sie für die meisten Antriebsfälle problemlos und betriebssicher eingesetzt werden können. Sollten dennoch Störungen auftreten, soll Ihnen die nachfolgende Liste die Beseitigung der Störung erleichtern.

Störung	Ursache
Motor dreht nicht	 keine Netzspannung defekte Gerätesicherung kein Sollwert Klemmen 1 u. 2 für Reglersperre nicht geschlossen Potentiometer I_{max} auf Linksanschlag
bei kleinem Sollwert dreht der Motor hoch und läßt sich nicht regeln	- kein Drehzahlistwert - Verbindung zwischen Klemmen 6 u. 14 fehlt (bei SGP 160-8/16P Klemmen -B und 6) - Tacho nicht oder verpolt angeschlossen - R21 zu hochohmig - Erregerfeld bei fremderregten Motoren nicht angeschlossen
Motor kommt nicht auf Drehzahl	- R21 falsch angepaßt (zu niederohmig) - Motor zu groß oder I _{max} auf zu kleinen Wert gestellt - Sollwert zu klein oder Sollwertpotentiometer verkehrt angeschlossen
Motor schwingt	- I x R Kompensation zu hoch eingestellt - große Schwungmassen des Antriebes Reglerbeschaltung muß abgeändert werden

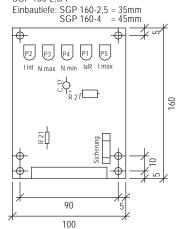

13. Aufbaurichtlinien

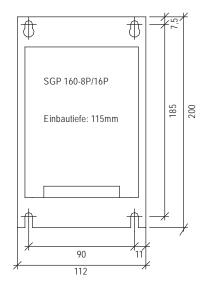
13.1 Anschlussplan SGP 160-2,5 (P) /4 (P)

Werte in Klammer bei Ausführung mit Stiftleiste



Anschluss bei Fremdsollwert


15


13.2 Anschlussplan SGP 160-8P/16P

13.3 Maßblatt

SGP 160-2,5/4

13.4 Funkentstörung und Schirmung

Schon während der Installation von Thyristorreglern müssen Störgrößen aus dem Bereich der Störaussendung sowie der Störfestigkeit auf ein verträgliches Maß (EG-EMV-Richtlinien) reduziert werden. Eine nachträgliche Entstörung an einem fertig installierten System produziert meist um ein Vielfaches höhere Kosten

Allein der Einsatz von Entstörfiltern in der Netzzuleitung oder am Ausgang garantieren keinesfalls die Lösung der Störprobleme. Nur durch den sachgerechten Aufbau der Filterelemente, der Verkabelung und der Schirmung ist eine Lösung möglich.

Ob die entsprechenden Funkentstörgrenzwerte eingehalten werden, kann aber nur messtechnisch nachgewiesen werden.

13.5 Aufbau

Der Regler und das Filter müssen möglichst nahe beieinander montiert und großflächig geerdet werden. Die beste Möglichkeit bietet eine Montageplatte (Bild 1). Bei dieser muß im Bereich der Auflagefläche der Lack entfernt werden. Auch Auflageflächen am Regler oder am Filter müssen entlackt sein.

Einige Anbieter von Schaltschränken bieten dazu bereits leitfähig beschichtete Montageplatten an.

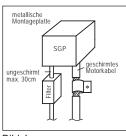
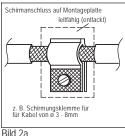
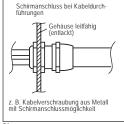
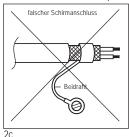


Bild 1

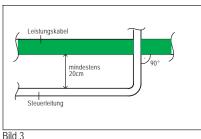

13.6 Schirmung

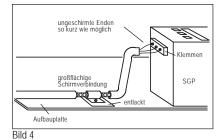

Um die Abstrahlung von Störenergie an die Umgebung zu verhindern, sollte der Regler in ein metallisch gekapseltes Gehäuse (Schaltschrank oder Schaltkasten) eingebaut werden, folgende Leitungen müssen geschirmt verlegt werden:


- Kabel zwischen Netzfilter und Regler, wenn dieses länger als 30cm ist.
- Steuerleitungen, wenn diese länger als 2m sind.

Kabel für digitale Signalübertragung müssen beidseitig mit dem Erdpotential verbunden werden. Kabel für hochimpedante analoge Steuersignale (Sollwert) dürfen zur Vermeidung einer 50Hz -Brummstörung nur einseitig geerdet werden.

Schirmverbindungen müssen immer großflächig ausgeführt werden (Bild 2a,2b). Auf Verbindungen mit Beidraht, über Steckerpins oder Klemmen ist deshalb zu verzichten (Bild2c).




2b

13.7 Verkabelung

Um gegenseitige Einkopplungen von Leitungen zu vermeiden, muß bei der Verlegung der Kabeldarauf geachtet werden, daß zwischen Steuerleitungen und Leistungskabel mindestens ein Abstand von 20cm eingehalten wird. Sollten sich Steuerleitungen mit Leistungskabeln kreuzen,so sind sie zueinander in einem Winkel von 90° zu verlegen (Bild 3).

Beim Anschluß von geschirmten Kabeln sind die ungeschirmten Leitungsenden so kurz wie möglich zu halten. Der großflächige Schirmanschluß muß sich nicht unbedingt am Schirmende befinden, er kann an geeigneter Position - einige Zentimeter entfernt - angeschlossen werden. Der Schirm ist immer beidseitig aufzulegen (Bild 4).

ACHTUNG!

Bei Verwendung von Netzfiltern werden die Ableitströme erhöht.

Die jeweiligen Ableitströme können den entsprechenden Datenblättern entnommen

werden.

Für Ableitströme bis 3,5mA und Festanschluß sind keine besonderen zusätzlichen Erdungsmaßnahmen erforderlich.

Für die häufigsten Anwendungen gilt nach VDE 0160 (EN 50178):

Wird bei festangeschlossenen Geräten der betriebsmäßige Ableitstrom von 3,5mA überschritten, so muß eine der folgenden Bedingungen eingehalten werden.

- Schutzleiter-Querschnitt mindestens 10mm²
- 2. Überwachung des Schutzleiters durch eine Einrichtung, die im Fehlerfall zu einer selbsttätigen Abschaltung führt.
- Verlegung eines zweiten Leiters, elektrisch parallel zum Schutzleiter über getrennte Klemmen. Dieser Leiter muß für sich allein die Anforderungen nach VDE 0100 Teil 540 erfüllen.

Empfohlene Filter

Netzfilter NF 250/6 Artikel-Nr.27000.25006 NF 250/10 Artikel-Nr.27000.25010 NF 250/20 Artikel-Nr.27000.25020

19

21

